메뉴 건너뛰기




Volumn 61, Issue , 2016, Pages 34-43

A graph kernel based on context vectors for extracting drug-drug interactions

Author keywords

Context vector; Drug drug interactions; Equivalent class; Graph kernel

Indexed keywords

CLASSIFICATION (OF INFORMATION); EQUIVALENCE CLASSES; ITERATIVE METHODS; TEXT MINING; VECTORS;

EID: 84961669805     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2016.03.014     Document Type: Article
Times cited : (42)

References (33)
  • 1
    • 84901001907 scopus 로고    scopus 로고
    • Chemical named entities recognition: a review on approaches and applications
    • Eltyeb S., Salim N. Chemical named entities recognition: a review on approaches and applications. J. Cheminf. 2014, 6:6-17.
    • (2014) J. Cheminf. , vol.6 , pp. 6-17
    • Eltyeb, S.1    Salim, N.2
  • 2
    • 84874662621 scopus 로고    scopus 로고
    • Informatics confronts drug-drug interactions
    • Percha B., Altman R.B. Informatics confronts drug-drug interactions. Trends Pharmacol. Sci. 2013, 34:178-184.
    • (2013) Trends Pharmacol. Sci. , vol.34 , pp. 178-184
    • Percha, B.1    Altman, R.B.2
  • 3
    • 84858300305 scopus 로고    scopus 로고
    • Discovery and explanation of drug-drug interactions via text mining
    • Percha B., Garten Y., Altman R.B. Discovery and explanation of drug-drug interactions via text mining. Pacific Symp. Biocomput. 2012, 410-421.
    • (2012) Pacific Symp. Biocomput. , pp. 410-421
    • Percha, B.1    Garten, Y.2    Altman, R.B.3
  • 6
    • 84883756903 scopus 로고    scopus 로고
    • The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions
    • Zazo María Herrero, Segura-Bedmar Isabel, Martínez Paloma, Declerck Thierry The DDI corpus: an annotated corpus with pharmacological substances and drug-drug interactions. J. Biomed. Inform. 2013, 46(5):914-920.
    • (2013) J. Biomed. Inform. , vol.46 , Issue.5 , pp. 914-920
    • Zazo María, Herrero1    Segura-Bedmar, I.2    Martínez, P.3    Declerck, T.4
  • 7
    • 84947916834 scopus 로고    scopus 로고
    • Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification
    • Ben Abacha A., Chowdhury M.F.M., Karanasiou A., Mrabet Y., Lavelli A., Zweigenbaum P. Text mining for pharmacovigilance: using machine learning for drug name recognition and drug-drug interaction extraction and classification. J. Biomed. Inform. 2015, 58:122-132.
    • (2015) J. Biomed. Inform. , vol.58 , pp. 122-132
    • Ben Abacha, A.1    Chowdhury, M.F.M.2    Karanasiou, A.3    Mrabet, Y.4    Lavelli, A.5    Zweigenbaum, P.6
  • 12
    • 56649091413 scopus 로고    scopus 로고
    • All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
    • Airola A., Pyysalo S., Bjorne J., Pahikkala T., Ginter F., Salakoski T. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC Bioinf. 2008, 9(Suppl 11):S2.
    • (2008) BMC Bioinf. , vol.9 , pp. S2
    • Airola, A.1    Pyysalo, S.2    Bjorne, J.3    Pahikkala, T.4    Ginter, F.5    Salakoski, T.6
  • 13
    • 85021209855 scopus 로고    scopus 로고
    • FBK-irst: a multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information
    • M.F.M. Chowdhury, A. Lavelli, FBK-irst: a multi-phase kernel based approach for drug-drug interaction detection and classification that exploits linguistic information, in: Seventh International Workshop on Semantic Evaluation (SemEval 2013), 2013, pp. 351-355.
    • (2013) Seventh International Workshop on Semantic Evaluation (SemEval 2013) , pp. 351-355
    • Chowdhury, M.F.M.1    Lavelli, A.2
  • 15
    • 71549135535 scopus 로고    scopus 로고
    • Protein-protein interaction extraction by leveraging multiple kernels and parsers
    • Miwa M., Sætre R., Miyao Y., Tsujii J.I. Protein-protein interaction extraction by leveraging multiple kernels and parsers. Int. J. Med. Inf. 2009, 78:e39-e46.
    • (2009) Int. J. Med. Inf. , vol.78 , pp. e39-e46
    • Miwa, M.1    Sætre, R.2    Miyao, Y.3    Tsujii, J.I.4
  • 16
    • 79954589221 scopus 로고    scopus 로고
    • Multiple kernel learning in protein-protein interaction extraction from biomedical literature
    • Yang Z., Tang N., Zhang X., Lin H., Li Y., Yang Z. Multiple kernel learning in protein-protein interaction extraction from biomedical literature. Artif. Intell. Med. 2011, 51:163-173.
    • (2011) Artif. Intell. Med. , vol.51 , pp. 163-173
    • Yang, Z.1    Tang, N.2    Zhang, X.3    Lin, H.4    Li, Y.5    Yang, Z.6
  • 18
    • 84930689846 scopus 로고    scopus 로고
    • Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach
    • Kim S., Liu H., Yeganova L., Wilbur W.J. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach. J. Biomed. Inform. 2015, 55:23-30.
    • (2015) J. Biomed. Inform. , vol.55 , pp. 23-30
    • Kim, S.1    Liu, H.2    Yeganova, L.3    Wilbur, W.J.4
  • 19
    • 84872192480 scopus 로고    scopus 로고
    • A detailed error analysis of 13 kernel methods for protein-protein interaction extraction
    • Tikk D., Solt I., Thomas P., Leser U. A detailed error analysis of 13 kernel methods for protein-protein interaction extraction. BMC Bioinf. 2013, 14.
    • (2013) BMC Bioinf. , vol.14
    • Tikk, D.1    Solt, I.2    Thomas, P.3    Leser, U.4
  • 20
    • 84925553600 scopus 로고    scopus 로고
    • A novel feature-based approach to extract drug-drug interactions from biomedical text
    • btu557
    • Bui Q.-C., Sloot P.M., van Mulligen E.M., Kors J.A. A novel feature-based approach to extract drug-drug interactions from biomedical text. Bioinformatics 2014, btu557.
    • (2014) Bioinformatics
    • Bui, Q.-C.1    Sloot, P.M.2    van Mulligen, E.M.3    Kors, J.A.4
  • 21
    • 59549091756 scopus 로고    scopus 로고
    • Evaluating contributions of natural language parsers to protein-protein interaction extraction
    • Miyao Y., Sagae K., Sætre R., Matsuzaki T., Tsujii J.i. Evaluating contributions of natural language parsers to protein-protein interaction extraction. Bioinformatics 2009, 25:394-400.
    • (2009) Bioinformatics , vol.25 , pp. 394-400
    • Miyao, Y.1    Sagae, K.2    Sætre, R.3    Matsuzaki, T.4    Tsujii, J.5
  • 24
    • 77951201715 scopus 로고    scopus 로고
    • Walk-weighted subsequence kernels for protein-protein interaction extraction
    • Kim S., Yoon J., Yang J., Park S. Walk-weighted subsequence kernels for protein-protein interaction extraction. BMC Bioinf. 2010, 11:107.
    • (2010) BMC Bioinf. , vol.11 , pp. 107
    • Kim, S.1    Yoon, J.2    Yang, J.3    Park, S.4
  • 27
    • 79959655291 scopus 로고    scopus 로고
    • Using a shallow linguistic kernel for drug-drug interaction extraction
    • Segura-Bedmar I., Martinez P., de Pablo-Sánchez C. Using a shallow linguistic kernel for drug-drug interaction extraction. J. Biomed. Inform. 2011, 44:789-804.
    • (2011) J. Biomed. Inform. , vol.44 , pp. 789-804
    • Segura-Bedmar, I.1    Martinez, P.2    de Pablo-Sánchez, C.3
  • 28
    • 84903437505 scopus 로고    scopus 로고
    • Training deterministic parsers with non-deterministic oracles
    • Goldberg Y., Nivre J. Training deterministic parsers with non-deterministic oracles. Trans. Assoc. Comput. Linguistics 2013, 1:403-414.
    • (2013) Trans. Assoc. Comput. Linguistics , vol.1 , pp. 403-414
    • Goldberg, Y.1    Nivre, J.2
  • 33
    • 84925485581 scopus 로고    scopus 로고
    • Drug-drug interaction software in clinical practice: a systematic review
    • Roblek T., Vaupotic T., Mrhar A., Lainscak M. Drug-drug interaction software in clinical practice: a systematic review. Eur. J. Clin. Pharmacol. 2015, 71:131-142.
    • (2015) Eur. J. Clin. Pharmacol. , vol.71 , pp. 131-142
    • Roblek, T.1    Vaupotic, T.2    Mrhar, A.3    Lainscak, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.