메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 1302-1310

Realtime multi-person 2D pose estimation using part affinity fields

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION;

EID: 85042428134     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.143     Document Type: Conference Paper
Times cited : (5347)

References (33)
  • 2
    • 84911448580 scopus 로고    scopus 로고
    • 2D human pose estimation: New benchmark and state of the art analysis
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2D human pose estimation: new benchmark and state of the art analysis. In CVPR, 2014.
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 3
    • 70450203723 scopus 로고    scopus 로고
    • Pictorial structures revisited: People detection and articulated pose estimation
    • M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: people detection and articulated pose estimation. In CVPR, 2009.
    • (2009) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 4
    • 77955992058 scopus 로고    scopus 로고
    • Monocular 3D pose estimation and tracking by detection
    • M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose estimation and tracking by detection. In CVPR, 2010.
    • (2010) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 6
    • 84996913044 scopus 로고    scopus 로고
    • Human pose estimation via convolutional part heatmap regression
    • A. Bulat and G. Tzimiropoulos. Human pose estimation via convolutional part heatmap regression. In ECCV, 2016.
    • (2016) ECCV
    • Bulat, A.1    Tzimiropoulos, G.2
  • 7
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen and A. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
    • (2014) NIPS
    • Chen, X.1    Yuille, A.2
  • 8
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. In IJCV, 2005.
    • (2005) IJCV
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 9
    • 84911427286 scopus 로고    scopus 로고
    • Using k-poselets for detecting people and localizing their keypoints
    • G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing their keypoints. In CVPR, 2014.
    • (2014) CVPR
    • Gkioxari, G.1    Hariharan, B.2    Girshick, R.3    Malik, J.4
  • 10
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 12
    • 85046253640 scopus 로고    scopus 로고
    • Multi-person pose estimation with local joint-to-person associations
    • U. Iqbal and J. Gall. Multi-person pose estimation with local joint-to-person associations. In ECCV Workshops, Crowd Understanding, 2016.
    • (2016) ECCV Workshops, Crowd Understanding
    • Iqbal, U.1    Gall, J.2
  • 13
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC, 2010.
    • (2010) BMVC
    • Johnson, S.1    Everingham, M.2
  • 14
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • Wiley Online Library
    • H. W. Kuhn. The hungarian method for the assignment problem. In Naval research logistics quarterly. Wiley Online Library, 1955.
    • (1955) Naval Research Logistics Quarterly
    • Kuhn, H.W.1
  • 17
    • 84990062418 scopus 로고    scopus 로고
    • Stacked hourglass networks for human pose estimation
    • A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016.
    • (2016) ECCV
    • Newell, A.1    Yang, K.2    Deng, J.3
  • 18
    • 84911409274 scopus 로고    scopus 로고
    • Multi-source deep learning for human pose estimation
    • W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose estimation. In CVPR, 2014.
    • (2014) CVPR
    • Ouyang, W.1    Chu, X.2    Wang, X.3
  • 20
    • 84973882951 scopus 로고    scopus 로고
    • Flowing convnets for human pose estimation in videos
    • T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for human pose estimation in videos. In ICCV, 2015.
    • (2015) ICCV
    • Pfister, T.1    Charles, J.2    Zisserman, A.3
  • 25
    • 24644504137 scopus 로고    scopus 로고
    • Strike a pose: Tracking people by finding stylized poses
    • D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a Pose: Tracking people by finding stylized poses. In CVPR, 2005.
    • (2005) CVPR
    • Ramanan, D.1    Forsyth, D.A.2    Zisserman, A.3
  • 26
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 27
    • 84856628543 scopus 로고    scopus 로고
    • Articulated part-based model for joint object detection and pose estimation
    • M. Sun and S. Savarese. Articulated part-based model for joint object detection and pose estimation. In ICCV, 2011.
    • (2011) ICCV
    • Sun, M.1    Savarese, S.2
  • 29
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
    • (2014) NIPS
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 30
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 32
    • 0003736078 scopus 로고    scopus 로고
    • Prentice hall Upper Saddle River
    • D. B. West et al. Introduction to graph theory, Volume 2. Prentice hall Upper Saddle River, 2001.
    • (2001) Introduction to Graph Theory , vol.2
    • West, D.B.1
  • 33
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. In TPAMI, 2013.
    • (2013) TPAMI
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.