메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 4132-4140

Predicting ground-level scene layout from aerial imagery

Author keywords

[No Author keywords available]

Indexed keywords

AERIAL PHOTOGRAPHY; COMPUTER VISION; IMAGE SEGMENTATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; SEMANTICS;

EID: 85041911320     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.440     Document Type: Conference Paper
Times cited : (224)

References (35)
  • 4
    • 85044329230 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • abs/1603.06201
    • G. Cheng and J. Han. A survey on object detection in optical remote sensing images. CoRR, abs/1603.06201, 2016
    • (2016) CoRR
    • Cheng, G.1    Han, J.2
  • 6
    • 85044267649 scopus 로고    scopus 로고
    • https://github.com/viibridges/crossnet
  • 8
    • 84992021921 scopus 로고    scopus 로고
    • Coupling ground-level panoramas and aerial imagery for change detection
    • N. Ghouaiel and S. Lefevre. Coupling ground-level panoramas and aerial imagery for change detection. Geo-spatial Information Science, 19(3):222-232, 2016
    • (2016) Geo-spatial Information Science , vol.19 , Issue.3 , pp. 222-232
    • Ghouaiel, N.1    Lefevre, S.2
  • 12
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 14
    • 84866651199 scopus 로고    scopus 로고
    • Robust visual domain adaptation with low-rank reconstruction
    • I.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang. Robust visual domain adaptation with low-rank reconstruction. In CVPR, 2012. 2
    • (2012) CVPR , pp. 2
    • Jhuo, I.-H.1    Liu, D.2    Lee, D.3    Chang, S.-F.4
  • 16
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 17
    • 79959696781 scopus 로고    scopus 로고
    • Semantic classification in aerial imagery by integrating appearance and height information
    • S. Kluckner, T. Mauthner, P. M. Roth, and H. Bischof. Semantic classification in aerial imagery by integrating appearance and height information. In ACCV, 2009
    • (2009) ACCV
    • Kluckner, S.1    Mauthner, T.2    Roth, P.M.3    Bischof, H.4
  • 18
    • 84887356836 scopus 로고    scopus 로고
    • Cross-view image geolocalization
    • T.-Y. Lin, S. Belongie, and J. Hays. Cross-view image geolocalization. In CVPR, 2013
    • (2013) CVPR
    • Lin, T.-Y.1    Belongie, S.2    Hays, J.3
  • 19
    • 84959245070 scopus 로고    scopus 로고
    • Learning deep representations for ground-to-aerial geolocalization
    • T.-Y. Lin, Y. Cui, S. Belongie, and J. Hays. Learning deep representations for ground-to-aerial geolocalization. In CVPR, 2015
    • (2015) CVPR
    • Lin, T.-Y.1    Cui, Y.2    Belongie, S.3    Hays, J.4
  • 21
    • 84986321469 scopus 로고    scopus 로고
    • HD maps: Fine-grained road segmentation by parsing ground and aerial images
    • G. Máttyus, S. Wang, S. Fidler, and R. Urtasun. Hd maps: Fine-grained road segmentation by parsing ground and aerial images. In CVPR, 2016
    • (2016) CVPR
    • Máttyus, G.1    Wang, S.2    Fidler, S.3    Urtasun, R.4
  • 22
    • 84055175817 scopus 로고    scopus 로고
    • Learning to detect roads in highresolution aerial images
    • V. Mnih and G. E. Hinton. Learning to detect roads in highresolution aerial images. In ECCV, 2010
    • (2010) ECCV
    • Mnih, V.1    Hinton, G.E.2
  • 23
    • 84867136367 scopus 로고    scopus 로고
    • Learning to label aerial images from noisy data
    • V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In ICML, 2012
    • (2012) ICML
    • Mnih, V.1    Hinton, G.E.2
  • 28
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 29
    • 84946780588 scopus 로고    scopus 로고
    • Unsupervised crossview semantic transfer for remote sensing image classification
    • H. Sun, S. Liu, S. Zhou, and H. Zou. Unsupervised crossview semantic transfer for remote sensing image classification. IEEE Geoscience and Remote Sensing Letters, 13(1):13-17, 2016
    • (2016) IEEE IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.1 , pp. 13-17
    • Sun, H.1    Liu, S.2    Zhou, S.3    Zou, H.4
  • 30
    • 85044323650 scopus 로고    scopus 로고
    • Localizing and orienting street views using overhead imagery
    • N. N. Vo and J. Hays. Localizing and orienting street views using overhead imagery. In ECCV, 2016
    • (2016) ECCV
    • Vo, N.N.1    Hays, J.2
  • 31
    • 84986317228 scopus 로고    scopus 로고
    • Cataloging public objects using aerial and street-level images-urban trees
    • J. D. Wegner, S. Branson, D. Hall, K. Schindler, and P. Perona. Cataloging public objects using aerial and street-level images-urban trees. In CVPR, 2016
    • (2016) CVPR
    • Wegner, J.D.1    Branson, S.2    Hall, D.3    Schindler, K.4    Perona, P.5
  • 32
    • 84898821044 scopus 로고    scopus 로고
    • A rule-based system for house reconstruction from aerial images
    • W. Willuhn and F. Ade. A rule-based system for house reconstruction from aerial images. In ICPR, 1996
    • (1996) ICPR
    • Willuhn, W.1    Ade, F.2
  • 34
    • 84973862384 scopus 로고    scopus 로고
    • Wide-area image geolocalization with aerial reference imagery
    • S. Workman, R. Souvenir, and N. Jacobs. Wide-area image geolocalization with aerial reference imagery. In ICCV, 2015
    • (2015) ICCV
    • Workman, S.1    Souvenir, R.2    Jacobs, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.