-
1
-
-
0035893122
-
Revisiting the source of candidemia: skin or gut?
-
Nucci M, Anaissie E. 2001. Revisiting the source of candidemia: skin or gut? Clin Infect Dis 33:1959-1967. https://doi.org/10.1086/323759
-
(2001)
Clin Infect Dis
, vol.33
, pp. 1959-1967
-
-
Nucci, M.1
Anaissie, E.2
-
2
-
-
63249087075
-
Candida colonisation as a source for candidaemia
-
Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, Santos CR, Lobo RD, Pessoa VP, Jr, Levin AS. 2009. Candida colonisation as a source for candidaemia. J Hosp Infect 72:9-16. https://doi.org/ 10.1016/j.jhin.2009.02.009
-
(2009)
J Hosp Infect
, vol.72
, pp. 9-16
-
-
Miranda, L.N.1
van der Heijden, I.M.2
Costa, S.F.3
Sousa, A.P.4
Sienra, R.A.5
Gobara, S.6
Santos, C.R.7
Lobo, R.D.8
Pessoa, V.P.9
Levin, A.S.10
-
3
-
-
46349085971
-
Fungi and inflammatory bowel diseases: alterations of composition and diversity
-
Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, Drews O, Weichert W, Timmis KN, Schreiber S. 2008. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831-841. https://doi.org/10.1080/0036 5520801935434
-
(2008)
Scand J Gastroenterol
, vol.43
, pp. 831-841
-
-
Ott, S.J.1
Kühbacher, T.2
Musfeldt, M.3
Rosenstiel, P.4
Hellmig, S.5
Rehman, A.6
Drews, O.7
Weichert, W.8
Timmis, K.N.9
Schreiber, S.10
-
4
-
-
84901296354
-
The mycobiota: interactions between commensal fungi and the host immune system
-
Underhill DM, Iliev ID. 2014. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14: 405-416. https://doi.org/10.1038/nri3684
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 405-416
-
-
Underhill, D.M.1
Iliev, I.D.2
-
5
-
-
85012004409
-
The fungal mycobiome and its interaction with gut bacteria in the host
-
Sam QH, Chang MW, Chai LY. 2017. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci 18:330. https:// doi.org/10.3390/ijms18020330
-
(2017)
Int J Mol Sci
, vol.18
, pp. 330
-
-
Sam, Q.H.1
Chang, M.W.2
Chai, L.Y.3
-
6
-
-
67650429655
-
Candida albicans colonization and ASCA in familial Crohn's disease
-
Standaert-Vitse A, Sendid B, Joossens M, François N, Vandewalle-El Khoury P, Branche J, Van Kruiningen H, Jouault T, Rutgeerts P, Gower-Rousseau C, Libersa C, Neut C, Broly F, Chamaillard M, Vermeire S, Poulain D, Colombel JF. 2009. Candida albicans colonization and ASCA in familial Crohn's disease. Am J Gastroenterol 104:1745-1753. https:// doi.org/10.1038/ajg.2009.225
-
(2009)
Am J Gastroenterol
, vol.104
, pp. 1745-1753
-
-
Standaert-Vitse, A.1
Sendid, B.2
Joossens, M.3
François, N.4
Vandewalle-El Khoury, P.5
Branche, J.6
Van Kruiningen, H.7
Jouault, T.8
Rutgeerts, P.9
Gower-Rousseau, C.10
Libersa, C.11
Neut, C.12
Broly, F.13
Chamaillard, M.14
Vermeire, S.15
Poulain, D.16
Colombel, J.F.17
-
7
-
-
84958087463
-
Fungal microbiota dysbiosis in IBD
-
Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L. 2017. Fungal microbiota dysbiosis in IBD. Gut 66:1039-1048. https://doi.org/10.1136/gutjnl-2015-310746
-
(2017)
Gut
, vol.66
, pp. 1039-1048
-
-
Sokol, H.1
Leducq, V.2
Aschard, H.3
Pham, H.P.4
Jegou, S.5
Landman, C.6
Cohen, D.7
Liguori, G.8
Bourrier, A.9
Nion-Larmurier, I.10
Cosnes, J.11
Seksik, P.12
Langella, P.13
Skurnik, D.14
Richard, M.L.15
Beaugerie, L.16
-
8
-
-
84994442786
-
Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease
-
Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, Neut C, Vermeire S, Clemente J, Colombel JF, Fujioka H, Poulain D, Sendid B, Ghannoum MA. 2016. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease. mBio 7:e01250-16. https://doi.org/10.1128/mBio.01250-16
-
(2016)
mBio
, vol.7
-
-
Hoarau, G.1
Mukherjee, P.K.2
Gower-Rousseau, C.3
Hager, C.4
Chandra, J.5
Retuerto, M.A.6
Neut, C.7
Vermeire, S.8
Clemente, J.9
Colombel, J.F.10
Fujioka, H.11
Poulain, D.12
Sendid, B.13
Ghannoum, M.A.14
-
9
-
-
84963791962
-
Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients
-
Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, Di Simone MP, Calabrese C, Poggioli G, Langella P, Campieri M, Sokol H. 2016. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J Crohns Colitis 10:296-305. https://doi.org/10.1093/ecco-jcc/jjv209
-
(2016)
J Crohns Colitis
, vol.10
, pp. 296-305
-
-
Liguori, G.1
Lamas, B.2
Richard, M.L.3
Brandi, G.4
da Costa, G.5
Hoffmann, T.W.6
Di Simone, M.P.7
Calabrese, C.8
Poggioli, G.9
Langella, P.10
Campieri, M.11
Sokol, H.12
-
10
-
-
84940403038
-
Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease
-
Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, Baldassano RN, Lewis JD, Bushman FD, Wu GD. 2015. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 21:1948-1956. https://doi.org/10.1097/MIB. 0000000000000454
-
(2015)
Inflamm Bowel Dis
, vol.21
, pp. 1948-1956
-
-
Chehoud, C.1
Albenberg, L.G.2
Judge, C.3
Hoffmann, C.4
Grunberg, S.5
Bittinger, K.6
Baldassano, R.N.7
Lewis, J.D.8
Bushman, F.D.9
Wu, G.D.10
-
11
-
-
84910133100
-
Specialized metabolites from the microbiome in health and disease
-
Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. 2014. Specialized metabolites from the microbiome in health and disease. Cell Metab 20:719-730. https://doi.org/10.1016/j.cmet.2014.10. 016
-
(2014)
Cell Metab
, vol.20
, pp. 719-730
-
-
Sharon, G.1
Garg, N.2
Debelius, J.3
Knight, R.4
Dorrestein, P.C.5
Mazmanian, S.K.6
-
12
-
-
84908309712
-
Antivirulence activity of the human gut metabolome
-
Antunes LC, McDonald JA, Schroeter K, Carlucci C, Ferreira RB, Wang M, Yurist-Doutsch S, Hira G, Jacobson K, Davies J, Allen-Vercoe E, Finlay BB. 2014. Antivirulence activity of the human gut metabolome. mBio 5:e01183-14. https://doi.org/10.1128/mBio.01183-14
-
(2014)
mBio
, vol.5
-
-
Antunes, L.C.1
McDonald, J.A.2
Schroeter, K.3
Carlucci, C.4
Ferreira, R.B.5
Wang, M.6
Yurist-Doutsch, S.7
Hira, G.8
Jacobson, K.9
Davies, J.10
Allen-Vercoe, E.11
Finlay, B.B.12
-
13
-
-
33644867989
-
Butyrate specifically downregulates Salmonella pathogenicity island 1 gene expression
-
Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A, Hinton JC, Van Immerseel F. 2006. Butyrate specifically downregulates Salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 72:946-949. https://doi.org/10.1128/AEM.72.1.946-949. 2006
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 946-949
-
-
Gantois, I.1
Ducatelle, R.2
Pasmans, F.3
Haesebrouck, F.4
Hautefort, I.5
Thompson, A.6
Hinton, J.C.7
Van Immerseel, F.8
-
14
-
-
84879343905
-
Control of pathogens and pathobionts by the gut microbiota
-
Kamada N, Chen GY, Inohara N, Núñez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685-690. https://doi.org/10.1038/ni.2608
-
(2013)
Nat Immunol
, vol.14
, pp. 685-690
-
-
Kamada, N.1
Chen, G.Y.2
Inohara, N.3
Núñez, G.4
-
15
-
-
77954053983
-
Candida albicans interactions with bacteria in the context of human health and disease
-
Morales DK, Hogan DA. 2010. Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:e1000886. https://doi.org/10.1371/journal.ppat.1000886
-
(2010)
PLoS Pathog
, vol.6
-
-
Morales, D.K.1
Hogan, D.A.2
-
16
-
-
80054707876
-
Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages
-
Nguyen LN, Lopes LC, Cordero RJ, Nosanchuk JD. 2011. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J Antimicrob Chemother 66:2573-2580. https://doi.org/10. 1093/jac/dkr358
-
(2011)
J Antimicrob Chemother
, vol.66
, pp. 2573-2580
-
-
Nguyen, L.N.1
Lopes, L.C.2
Cordero, R.J.3
Nosanchuk, J.D.4
-
17
-
-
79953170241
-
Effect of antibiotic treatment on the intestinal metabolome
-
Antunes LC, Han J, Ferreira RB, Lolić P, Borchers CH, Finlay BB. 2011. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob Agents Chemother 55:1494-1503. https://doi.org/10.1128/AAC. 01664-10
-
(2011)
Antimicrob Agents Chemother
, vol.55
, pp. 1494-1503
-
-
Antunes, L.C.1
Han, J.2
Ferreira, R.B.3
Lolić, P.4
Borchers, C.H.5
Finlay, B.B.6
-
18
-
-
84924371151
-
Metabolomic analysis of human fecal microbiota: a comparison of feces-derived communities and defined mixed communities
-
Yen S, McDonald JA, Schroeter K, Oliphant K, Sokolenko S, Blondeel EJ, Allen-Vercoe E, Aucoin MG. 2015. Metabolomic analysis of human fecal microbiota: a comparison of feces-derived communities and defined mixed communities. J Proteome Res 14:1472-1482. https://doi.org/10. 1021/pr5011247
-
(2015)
J Proteome Res
, vol.14
, pp. 1472-1482
-
-
Yen, S.1
McDonald, J.A.2
Schroeter, K.3
Oliphant, K.4
Sokolenko, S.5
Blondeel, E.J.6
Allen-Vercoe, E.7
Aucoin, M.G.8
-
19
-
-
84929334974
-
Chemical communication in the gut: effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens
-
Vogt SL, Peña-Díaz J, Finlay BB. 2015. Chemical communication in the gut: effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34:106-115. https://doi.org/10.1016/j. anaerobe.2015.05.002
-
(2015)
Anaerobe
, vol.34
, pp. 106-115
-
-
Vogt, S.L.1
Peña-Díaz, J.2
Finlay, B.B.3
-
20
-
-
84877020842
-
Stool substitute transplant therapy for the eradication of Clostridium difficile infection: "RePOOPulating" the gut
-
Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E. 2013. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: "RePOOPulating" the gut. Microbiome 1:3. https://doi.org/10.1186/2049-2618-1-3
-
(2013)
Microbiome
, vol.1
, pp. 3
-
-
Petrof, E.O.1
Gloor, G.B.2
Vanner, S.J.3
Weese, S.J.4
Carter, D.5
Daigneault, M.C.6
Brown, E.M.7
Schroeter, K.8
Allen-Vercoe, E.9
-
21
-
-
84946229508
-
Administration of defined microbiota is protective in a murine Salmonella infection model
-
Martz SL, McDonald JA, Sun J, Zhang YG, Gloor GB, Noordhof C, He SM, Gerbaba TK, Blennerhassett M, Hurlbut DJ, Allen-Vercoe E, Claud EC, Petrof EO. 2015. Administration of defined microbiota is protective in a murine Salmonella infection model. Sci Rep 5:16094. https://doi.org/10. 1038/srep16094
-
(2015)
Sci Rep
, vol.5
-
-
Martz, S.L.1
McDonald, J.A.2
Sun, J.3
Zhang, Y.G.4
Gloor, G.B.5
Noordhof, C.6
He, S.M.7
Gerbaba, T.K.8
Blennerhassett, M.9
Hurlbut, D.J.10
Allen-Vercoe, E.11
Claud, E.C.12
Petrof, E.O.13
-
22
-
-
84958241663
-
The human gut mycobiome: pitfalls and potentials-a mycologist's perspective
-
Suhr MJ, Hallen-Adams HE. 2015. The human gut mycobiome: pitfalls and potentials-a mycologist's perspective. Mycologia 107:1057-1073. https://doi.org/10.3852/15-147
-
(2015)
Mycologia
, vol.107
, pp. 1057-1073
-
-
Suhr, M.J.1
Hallen-Adams, H.E.2
-
23
-
-
84880335170
-
The human mycobiome in health and disease
-
Cui L, Morris A, Ghedin E. 2013. The human mycobiome in health and disease. Genome Med 5:63. https://doi.org/10.1186/gm467
-
(2013)
Genome Med
, vol.5
, pp. 63
-
-
Cui, L.1
Morris, A.2
Ghedin, E.3
-
24
-
-
0141818929
-
Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery
-
Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H. 2003. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167-181. https://doi.org/10.1046/j. 1365-2958.2003.03697.x
-
(2003)
Mol Microbiol
, vol.50
, pp. 167-181
-
-
Roemer, T.1
Jiang, B.2
Davison, J.3
Ketela, T.4
Veillette, K.5
Breton, A.6
Tandia, F.7
Linteau, A.8
Sillaots, S.9
Marta, C.10
Martel, N.11
Veronneau, S.12
Lemieux, S.13
Kauffman, S.14
Becker, J.15
Storms, R.16
Boone, C.17
Bussey, H.18
-
25
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201. https://doi.org/10.1534/ genetics.111.133363
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
26
-
-
0034774478
-
Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR
-
Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45:3162-3170. https://doi.org/10.1128/AAC.45.11.3162-3170.2001
-
(2001)
Antimicrob Agents Chemother
, vol.45
, pp. 3162-3170
-
-
Cruz, M.C.1
Goldstein, A.L.2
Blankenship, J.3
Del Poeta, M.4
Perfect, J.R.5
McCusker, J.H.6
Bennani, Y.L.7
Cardenas, M.E.8
Heitman, J.9
-
27
-
-
84943454018
-
Ribosomal protein s6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans
-
Chowdhury T, Köhler JR. 2015. Ribosomal protein s6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans. Mol Microbiol 98:384-402. https://doi.org/10.1111/mmi.13130
-
(2015)
Mol Microbiol
, vol.98
, pp. 384-402
-
-
Chowdhury, T.1
Köhler, J.R.2
-
28
-
-
0036899644
-
Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae
-
Crespo JL, Hall MN. 2002. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 66:579-591. https://doi.org/10.1128/MMBR.66.4.579-591.2002
-
(2002)
Microbiol Mol Biol Rev
, vol.66
, pp. 579-591
-
-
Crespo, J.L.1
Hall, M.N.2
-
29
-
-
14844363721
-
Signaling by target of rapamycin proteins in cell growth control
-
Inoki K, Ouyang H, Li Y, Guan KL. 2005. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69:79-100. https://doi.org/10.1128/MMBR.69.1.79-100.2005
-
(2005)
Microbiol Mol Biol Rev
, vol.69
, pp. 79-100
-
-
Inoki, K.1
Ouyang, H.2
Li, Y.3
Guan, K.L.4
-
30
-
-
2942584864
-
"Sleeping Beauty": quiescence in Saccharomyces cerevisiae
-
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. 2004. "Sleeping Beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187-206. https://doi.org/10.1128/MMBR.68.2. 187-206.2004
-
(2004)
Microbiol Mol Biol Rev
, vol.68
, pp. 187-206
-
-
Gray, J.V.1
Petsko, G.A.2
Johnston, G.C.3
Ringe, D.4
Singer, R.A.5
Werner-Washburne, M.6
-
31
-
-
61449094788
-
The protein kinase Tor1 regulates adhesin gene expression in Candida albicans
-
Bastidas RJ, Heitman J, Cardenas ME. 2009. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5:e1000294. https://doi.org/10.1371/journal.ppat.1000294
-
(2009)
PLoS Pathog
, vol.5
-
-
Bastidas, R.J.1
Heitman, J.2
Cardenas, M.E.3
-
32
-
-
84898663675
-
Regulatory networks controlling nitrogen sensing and uptake in Candida albicans
-
Ramachandra S, Linde J, Brock M, Guthke R, Hube B, Brunke S. 2014. Regulatory networks controlling nitrogen sensing and uptake in Candida albicans. PLoS One 9:e92734. https://doi.org/10.1371/journal.pone. 0092734
-
(2014)
PLoS One
, vol.9
-
-
Ramachandra, S.1
Linde, J.2
Brock, M.3
Guthke, R.4
Hube, B.5
Brunke, S.6
-
33
-
-
79956355763
-
Nitrogen regulation of morphogenesis and protease secretion in Candida albicans
-
Morschhäuser J. 2011. Nitrogen regulation of morphogenesis and protease secretion in Candida albicans. Int J Med Microbiol 301:390-394. https://doi.org/10.1016/j.ijmm.2011.04.005
-
(2011)
Int J Med Microbiol
, vol.301
, pp. 390-394
-
-
Morschhäuser, J.1
-
34
-
-
0033573016
-
The TOR signaling cascade regulates gene expression in response to nutrients
-
Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271-3279. https://doi.org/10.1101/gad.13.24.3271
-
(1999)
Genes Dev
, vol.13
, pp. 3271-3279
-
-
Cardenas, M.E.1
Cutler, N.S.2
Lorenz, M.C.3
Di Como, C.J.4
Heitman, J.5
-
35
-
-
0033592983
-
Rapamycin-modulated transcription defines the subset of nutrientsensitive signaling pathways directly controlled by the Tor proteins
-
Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. 1999. Rapamycin-modulated transcription defines the subset of nutrientsensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96:14866-14870. https://doi.org/10.1073/pnas.96.26. 14866
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 14866-14870
-
-
Hardwick, J.S.1
Kuruvilla, F.G.2
Tong, J.K.3
Shamji, A.F.4
Schreiber, S.L.5
-
36
-
-
0037474301
-
The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phos-phorus, or sulfur
-
Boer VM, de Winde JH, Pronk JT, Piper MD. 2003. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phos-phorus, or sulfur. J Biol Chem 278:3265-3274. https://doi.org/10.1074/ jbc.M209759200
-
(2003)
J Biol Chem
, vol.278
, pp. 3265-3274
-
-
Boer, V.M.1
de Winde, J.H.2
Pronk, J.T.3
Piper, M.D.4
-
37
-
-
73949083506
-
Glucose promotes stress resistance in the fungal pathogen Candida albicans
-
Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ. 2009. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell 20:4845-4855. https://doi.org/10.1091/ mbc.E09-01-0002
-
(2009)
Mol Biol Cell
, vol.20
, pp. 4845-4855
-
-
Rodaki, A.1
Bohovych, I.M.2
Enjalbert, B.3
Young, T.4
Odds, F.C.5
Gow, N.A.6
Brown, A.J.7
-
38
-
-
84879369738
-
Commensal bacteria at the interface of host metabolism and the immune system
-
Brestoff JR, Artis D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676-684. https:// doi.org/10.1038/ni.2640
-
(2013)
Nat Immunol
, vol.14
, pp. 676-684
-
-
Brestoff, J.R.1
Artis, D.2
-
39
-
-
84936891126
-
Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization
-
Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, Simms-Waldrip TR, Xie Y, Hooper LV, Koh AY. 2015. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med 21:808-814. https://doi.org/10.1038/nm.3871
-
(2015)
Nat Med
, vol.21
, pp. 808-814
-
-
Fan, D.1
Coughlin, L.A.2
Neubauer, M.M.3
Kim, J.4
Kim, M.S.5
Zhan, X.6
Simms-Waldrip, T.R.7
Xie, Y.8
Hooper, L.V.9
Koh, A.Y.10
-
40
-
-
63849241608
-
Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine
-
Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x
-
(2009)
FEMS Microbiol Lett
, vol.294
, pp. 1-8
-
-
Louis, P.1
Flint, H.J.2
-
41
-
-
0037126667
-
The microbiology of butyrate formation in the human colon
-
Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133-139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
-
(2002)
FEMS Microbiol Lett
, vol.217
, pp. 133-139
-
-
Pryde, S.E.1
Duncan, S.H.2
Hold, G.L.3
Stewart, C.S.4
Flint, H.J.5
-
42
-
-
84896734943
-
A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes
-
Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H. 2014. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506:498-502. https://doi.org/10.1038/nature12907
-
(2014)
Nature
, vol.506
, pp. 498-502
-
-
Larsbrink, J.1
Rogers, T.E.2
Hemsworth, G.R.3
McKee, L.S.4
Tauzin, A.S.5
Spadiut, O.6
Klinter, S.7
Pudlo, N.A.8
Urs, K.9
Koropatkin, N.M.10
Creagh, A.L.11
Haynes, C.A.12
Kelly, A.G.13
Cederholm, S.N.14
Davies, G.J.15
Martens, E.C.16
Brumer, H.17
-
43
-
-
84884168072
-
Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model
-
McDonald JA, Schroeter K, Fuentes S, Heikamp-Dejong I, Khursigara CM, de Vos WM, Allen-Vercoe E. 2013. Evaluation of microbial community reproducibility, stability and composition in a human distal gut chemostat model. J Microbiol Methods 95:167-174. https://doi.org/10.1016/j. mimet.2013.08.008
-
(2013)
J Microbiol Methods
, vol.95
, pp. 167-174
-
-
McDonald, J.A.1
Schroeter, K.2
Fuentes, S.3
Heikamp-Dejong, I.4
Khursigara, C.M.5
de Vos, W.M.6
Allen-Vercoe, E.7
-
44
-
-
2542497814
-
Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences
-
Guillemette T, Sellam A, Simoneau P. 2004. Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences. Curr Genet 45:214-224. https://doi.org/10.1007/s00294-003-0479-z
-
(2004)
Curr Genet
, vol.45
, pp. 214-224
-
-
Guillemette, T.1
Sellam, A.2
Simoneau, P.3
-
45
-
-
84871809302
-
STAR: ultrafast universal RNA-seq aligner
-
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21. https://doi.org/10.1093/bioinformatics/bts635
-
(2013)
Bioinformatics
, vol.29
, pp. 15-21
-
-
Dobin, A.1
Davis, C.A.2
Schlesinger, F.3
Drenkow, J.4
Zaleski, C.5
Jha, S.6
Batut, P.7
Chaisson, M.8
Gingeras, T.R.9
-
46
-
-
84859885816
-
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
-
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562-578. https://doi.org/10.1038/nprot.2012.016
-
(2012)
Nat Protoc
, vol.7
, pp. 562-578
-
-
Trapnell, C.1
Roberts, A.2
Goff, L.3
Pertea, G.4
Kim, D.5
Kelley, D.R.6
Pimentel, H.7
Salzberg, S.L.8
Rinn, J.L.9
Pachter, L.10
|