메뉴 건너뛰기




Volumn 78, Issue 2, 2018, Pages 297-318

Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters

Author keywords

cluster bootstrapping; cluster randomized trials; clustered data; low number of clusters

Indexed keywords


EID: 85041022610     PISSN: 00131644     EISSN: 15523888     Source Type: Journal    
DOI: 10.1177/0013164416678980     Document Type: Article
Times cited : (64)

References (70)
  • 2
    • 65549155762 scopus 로고    scopus 로고
    • Modeling certainty with clustered data: A comparison of methods
    • Arceneaux K., Nickerson D. W., (2009). Modeling certainty with clustered data: A comparison of methods. Political Analysis, 17, 177-190. doi:10.1093/pan/mpp004
    • (2009) Political Analysis , vol.17 , pp. 177-190
    • Arceneaux, K.1    Nickerson, D.W.2
  • 5
    • 34248348703 scopus 로고    scopus 로고
    • Bias reduction in standard errors for linear regression with multi-stage samples
    • Bell R., McCaffrey D., (2002). Bias reduction in standard errors for linear regression with multi-stage samples. Survey Methodology, 28, 169-182.
    • (2002) Survey Methodology , vol.28 , pp. 169-182
    • Bell, R.1    McCaffrey, D.2
  • 6
    • 49749101681 scopus 로고    scopus 로고
    • Bootstrap-based improvements for inference with clustered errors
    • Cameron A. C., Gelbach J. B., Miller D. L., (2008). Bootstrap-based improvements for inference with clustered errors. Review of Economics and Statistics, 90, 414-427. doi:10.1162/rest.90.3.414
    • (2008) Review of Economics and Statistics , vol.90 , pp. 414-427
    • Cameron, A.C.1    Gelbach, J.B.2    Miller, D.L.3
  • 7
    • 84929658686 scopus 로고    scopus 로고
    • A practitioner’s guide to cluster-robust inference
    • Cameron A. C., Miller D. L., (2015). A practitioner’s guide to cluster-robust inference. Journal of Human Resources, 50, 317-372. doi:10.3368/jhr.50.2.317
    • (2015) Journal of Human Resources , vol.50 , pp. 317-372
    • Cameron, A.C.1    Miller, D.L.2
  • 9
    • 47949122241 scopus 로고    scopus 로고
    • When can group level clustering be ignored? Multilevel models versus single-level models with sparse data
    • Clarke P., (2008). When can group level clustering be ignored? Multilevel models versus single-level models with sparse data. Journal of Epidemiology and Community Health, 62, 752-758. doi:10.1136/jech.2007.060798
    • (2008) Journal of Epidemiology and Community Health , vol.62 , pp. 752-758
    • Clarke, P.1
  • 15
    • 84872413608 scopus 로고    scopus 로고
    • PowerUp!: A tool for calculating minimum detectable effect sizes and minimum required sample sizes for experimental and quasi-experimental design studies
    • Dong N., Maynard R., (2013). PowerUp!: A tool for calculating minimum detectable effect sizes and minimum required sample sizes for experimental and quasi-experimental design studies. Journal of Research on Educational Effectiveness, 6, 24-67. doi:10.1080/19345747.2012.673143
    • (2013) Journal of Research on Educational Effectiveness , vol.6 , pp. 24-67
    • Dong, N.1    Maynard, R.2
  • 16
    • 84878809129 scopus 로고    scopus 로고
    • Principled missing data methods for researchers
    • Dong Y., Peng C.-Y. J., (2013). Principled missing data methods for researchers. SpringerPlus, 2, 222. doi:10.1186/2193-1801-2-222
    • (2013) SpringerPlus , vol.2 , pp. 222
    • Dong, Y.1    Peng, C.Y.J.2
  • 17
    • 1442354585 scopus 로고    scopus 로고
    • Pitfalls of and controversies in cluster randomization trials
    • Donner A., Klar N., (2004). Pitfalls of and controversies in cluster randomization trials. American Journal of Public Health, 94, 416-422.
    • (2004) American Journal of Public Health , vol.94 , pp. 416-422
    • Donner, A.1    Klar, N.2
  • 18
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron B., (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1-26. doi:10.1214/aos/1176344552
    • (1979) Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 21
    • 34548463099 scopus 로고    scopus 로고
    • Centering predictor variables in cross-sectional multilevel models: A new look at an old issue
    • Enders C. K., Tofighi D., (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological Methods, 12, 121-138. doi:10.1037/1082-989X.12.2.121
    • (2007) Psychological Methods , vol.12 , pp. 121-138
    • Enders, C.K.1    Tofighi, D.2
  • 23
    • 12344267161 scopus 로고    scopus 로고
    • Use of the bootstrap in analysing cost data from cluster randomised trials: Some simulation results
    • Flynn T. N., Peters T. J., (2004). Use of the bootstrap in analysing cost data from cluster randomised trials: Some simulation results. BMC Health Services Research, 4, 33. doi:10.1186/1472-6963-4-33
    • (2004) BMC Health Services Research , vol.4 , pp. 33
    • Flynn, T.N.1    Peters, T.J.2
  • 25
    • 84957990791 scopus 로고    scopus 로고
    • Creating birds of similar feathers: Leveraging similarity to improve teacher–student relationships and academic achievement
    • Gehlbach H., Brinkworth M. E., King A. M., Hsu L. M., McIntyre J., Rogers T., (2016). Creating birds of similar feathers: Leveraging similarity to improve teacher–student relationships and academic achievement. Journal of Educational Psychology, 108, 342-352. doi:10.1037/edu0000042
    • (2016) Journal of Educational Psychology , vol.108 , pp. 342-352
    • Gehlbach, H.1    Brinkworth, M.E.2    King, A.M.3    Hsu, L.M.4    McIntyre, J.5    Rogers, T.6
  • 27
    • 30444457239 scopus 로고    scopus 로고
    • A primer for using and understanding weights with national datasets
    • Hahs-Vaughn D. L., (2005). A primer for using and understanding weights with national datasets. Journal of Experimental Education, 73, 221-248. doi:10.3200/JEXE.73.3.221-248
    • (2005) Journal of Experimental Education , vol.73 , pp. 221-248
    • Hahs-Vaughn, D.L.1
  • 28
    • 84907090576 scopus 로고    scopus 로고
    • A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models: The R package pbkrtest
    • Halekoh U., Højsgaard S., (2014). A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models: The R package pbkrtest. Journal of Statistical Software, 59, 1-32. doi:10.18637/jss.v059.i09
    • (2014) Journal of Statistical Software , vol.59 , pp. 1-32
    • Halekoh, U.1    Højsgaard, S.2
  • 29
    • 84982787201 scopus 로고    scopus 로고
    • Marketing vegetables in elementary school cafeterias to increase uptake
    • Hanks A. S., Just D. R., Brumberg A., (2016). Marketing vegetables in elementary school cafeterias to increase uptake. Pediatrics, 138. doi:10.1542/peds.2015-1720
    • (2016) Pediatrics , vol.138
    • Hanks, A.S.1    Just, D.R.2    Brumberg, A.3
  • 30
    • 79956266032 scopus 로고    scopus 로고
    • A bootstrap method for conducting statistical inference with clustered data
    • Harden J. J., (2011). A bootstrap method for conducting statistical inference with clustered data. State Politics & Policy Quarterly, 11, 223-246. doi:10.1177/1532440011406233
    • (2011) State Politics & Policy Quarterly , vol.11 , pp. 223-246
    • Harden, J.J.1
  • 33
    • 34247269174 scopus 로고    scopus 로고
    • Intraclass correlation values for planning group-randomized trials in education
    • Hedges L. V., Hedberg E. C., (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60-87. doi:10.3102/0162373707299706
    • (2007) Educational Evaluation and Policy Analysis , vol.29 , pp. 60-87
    • Hedges, L.V.1    Hedberg, E.C.2
  • 35
    • 84947036889 scopus 로고    scopus 로고
    • Alternatives to multilevel modeling for the analysis of clustered data
    • Huang F., (2016). Alternatives to multilevel modeling for the analysis of clustered data. Journal of Experimental Education, 84, 175-196. doi:10.1080/00220973.2014.952397
    • (2016) Journal of Experimental Education , vol.84 , pp. 175-196
    • Huang, F.1
  • 37
    • 84857380136 scopus 로고    scopus 로고
    • Impact of CONSORT extension for cluster randomised trials on quality of reporting and study methodology: Review of random sample of 300 trials, 2000-8
    • Ivers N. M., Taljaard M., Dixon S., Bennett C., McRae A., Taleban J... Donner A., (2011). Impact of CONSORT extension for cluster randomised trials on quality of reporting and study methodology: Review of random sample of 300 trials, 2000-8. BMJ, 343, d5886-d5886. doi:10.1136/bmj.d5886
    • (2011) BMJ , vol.343 , pp. d5886
    • Ivers, N.M.1    Taljaard, M.2    Dixon, S.3    Bennett, C.4    McRae, A.5    Taleban, J.6    Donner, A.7
  • 38
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • Kenward M. G., Roger J. H., (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983-997.
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 40
    • 84938968220 scopus 로고    scopus 로고
    • The instructor’s face in video instruction: Evidence from two large-scale field studies
    • Kizilcec R. F., Bailenson J. N., Gomez C. J., (2015). The instructor’s face in video instruction: Evidence from two large-scale field studies. Journal of Educational Psychology, 107, 724-739. doi:10.1037/edu0000013
    • (2015) Journal of Educational Psychology , vol.107 , pp. 724-739
    • Kizilcec, R.F.1    Bailenson, J.N.2    Gomez, C.J.3
  • 43
    • 84929045689 scopus 로고    scopus 로고
    • Examining the rule of thumb of not using multilevel modeling: The “design effect smaller than two” rule
    • Lai M. H. C., Kwok O., (2015). Examining the rule of thumb of not using multilevel modeling: The “design effect smaller than two” rule. Journal of Experimental Education, 83, 423-438. doi:10.1080/00220973.2014.907229
    • (2015) Journal of Experimental Education , vol.83 , pp. 423-438
    • Lai, M.H.C.1    Kwok, O.2
  • 44
    • 69949190053 scopus 로고    scopus 로고
    • Sufficient sample sizes for multilevel modeling
    • Maas C., Hox J., (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1, 86-92.
    • (2005) Methodology , vol.1 , pp. 86-92
    • Maas, C.1    Hox, J.2
  • 45
    • 77749305085 scopus 로고    scopus 로고
    • Dealing with dependence (part I): Understanding the effects of clustered data
    • McCoach D. B., Adelson J. L., (2010). Dealing with dependence (part I): Understanding the effects of clustered data. Gifted Child Quarterly, 54, 152-155. doi:10.1177/0016986210363076
    • (2010) Gifted Child Quarterly , vol.54 , pp. 152-155
    • McCoach, D.B.1    Adelson, J.L.2
  • 46
    • 84908298355 scopus 로고    scopus 로고
    • The effect of small sample size on two-level model estimates: A review and illustration
    • McNeish D. M., Stapleton L. M., (2016). The effect of small sample size on two-level model estimates: A review and illustration. Educational Psychology Review, 28, 295-314.
    • (2016) Educational Psychology Review , vol.28 , pp. 295-314
    • McNeish, D.M.1    Stapleton, L.M.2
  • 47
    • 60449092566 scopus 로고    scopus 로고
    • Estimating bootstrap confidence intervals for two-level models
    • Hox J.J., De Leeuw E.D., (eds), Amsterdam, Netherlands, TT-Publikaties,. In, (Eds.), (
    • Meijer E., Busing F., Van der Leeden R., (1998). Estimating bootstrap confidence intervals for two-level models. In Hox J. J., De Leeuw E. D., (Eds.), Assumptions, robustness, and estimation methods in multivariate modeling (pp. 35-48). Amsterdam, Netherlands: TT-Publikaties.
    • (1998) Assumptions, robustness, and estimation methods in multivariate modeling , pp. 35-48
    • Meijer, E.1    Busing, F.2    Van der Leeden, R.3
  • 48
    • 84979670910 scopus 로고    scopus 로고
    • How large are the consequences of covariate imbalance in cluster randomized trials: A simulation study with a continuous outcome and a binary covariate at the cluster level
    • Moerbeek M., van Schie S., (2016). How large are the consequences of covariate imbalance in cluster randomized trials: A simulation study with a continuous outcome and a binary covariate at the cluster level. BMC Medical Research Methodology, 16, 79. doi:10.1186/s12874-016-0182-7
    • (2016) BMC Medical Research Methodology , vol.16 , pp. 79
    • Moerbeek, M.1    van Schie, S.2
  • 49
    • 0001441322 scopus 로고
    • Random group effects and the precision of regression estimates
    • Moulton B. R., (1986). Random group effects and the precision of regression estimates. Journal of Econometrics, 32, 385-397. doi:10.1016/0304-4076(86)90021-7
    • (1986) Journal of Econometrics , vol.32 , pp. 385-397
    • Moulton, B.R.1
  • 50
    • 0000265332 scopus 로고
    • An illustration of a pitfall in estimating the effects of aggregate variables on micro units
    • Moulton B. R., (1990). An illustration of a pitfall in estimating the effects of aggregate variables on micro units. Review of Economics and Statistics, 72, 334-338. doi:10.2307/2109724
    • (1990) Review of Economics and Statistics , vol.72 , pp. 334-338
    • Moulton, B.R.1
  • 51
    • 85041024579 scopus 로고    scopus 로고
    • A comparison between hierarchical linear modeling and multiple linear regression in selected data sets
    • Mundfrom D. J., Schultz M. R., (2001). A comparison between hierarchical linear modeling and multiple linear regression in selected data sets. Multiple Linear Regression Viewpoints, 27, 3-11.
    • (2001) Multiple Linear Regression Viewpoints , vol.27 , pp. 3-11
    • Mundfrom, D.J.1    Schultz, M.R.2
  • 53
    • 84862756915 scopus 로고    scopus 로고
    • Data with hierarchical structure: Impact of intraclass correlation and sample size on type-I error
    • Musca S. C., Kamiejski R., Nugier A., Méot A., Er-Rafiy A., Brauer M., (2011). Data with hierarchical structure: Impact of intraclass correlation and sample size on type-I error. Frontiers in Psychology, 2, 74. doi:10.3389/fpsyg.2011.00074
    • (2011) Frontiers in Psychology , vol.2 , pp. 74
    • Musca, S.C.1    Kamiejski, R.2    Nugier, A.3    Méot, A.4    Er-Rafiy, A.5    Brauer, M.6
  • 54
  • 55
    • 33646520039 scopus 로고    scopus 로고
    • From the help desk: Some bootstrapping techniques
    • Poi B. P., (2004). From the help desk: Some bootstrapping techniques. Stata Journal, 4, 312-328.
    • (2004) Stata Journal , vol.4 , pp. 312-328
    • Poi, B.P.1
  • 56
    • 13844271275 scopus 로고    scopus 로고
    • SPSS and SAS procedures for estimating indirect effects in simple mediation models
    • Preacher K. J., Hayes A. F., (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731.
    • (2004) Behavior Research Methods, Instruments, & Computers , vol.36 , pp. 717-731
    • Preacher, K.J.1    Hayes, A.F.2
  • 57
    • 84975753826 scopus 로고    scopus 로고
    • Vienna, Austria, R Foundation for Statistical Computing,. Retrieved from
    • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
    • (2016) R: A language and environment for statistical computing
  • 59
    • 79551541339 scopus 로고    scopus 로고
    • Bootstrapping within the multilevel/hierarchical linear modeling framework: A primer for use with SAS and SPLUS
    • Roberts J., Fan X., (2004). Bootstrapping within the multilevel/hierarchical linear modeling framework: A primer for use with SAS and SPLUS. Multiple Linear Regression Viewpoints, 30, 23-33.
    • (2004) Multiple Linear Regression Viewpoints , vol.30 , pp. 23-33
    • Roberts, J.1    Fan, X.2
  • 60
    • 84863306901 scopus 로고    scopus 로고
    • lavaan: An R package for structural equation modeling
    • Rosseel Y., (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36.
    • (2012) Journal of Statistical Software , vol.48 , pp. 1-36
    • Rosseel, Y.1
  • 61
    • 61449179166 scopus 로고    scopus 로고
    • Estimating statistical power and required sample sizes for organizational research using multilevel modeling
    • Scherbaum C. A., Ferreter J. M., (2009). Estimating statistical power and required sample sizes for organizational research using multilevel modeling. Organizational Research Methods, 12, 347-367.
    • (2009) Organizational Research Methods , vol.12 , pp. 347-367
    • Scherbaum, C.A.1    Ferreter, J.M.2
  • 65
    • 84978982859 scopus 로고    scopus 로고
    • Substantial risks associated with few clusters in cluster randomized and stepped wedge designs
    • Taljaard M., Teerenstra S., Ivers N. M., Fergusson D. A., (2016). Substantial risks associated with few clusters in cluster randomized and stepped wedge designs. Clinical Trials, 13, 459-463. doi:10.1177/1740774516634316
    • (2016) Clinical Trials , vol.13 , pp. 459-463
    • Taljaard, M.1    Teerenstra, S.2    Ivers, N.M.3    Fergusson, D.A.4
  • 66
    • 84878119201 scopus 로고    scopus 로고
    • A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models
    • Thai H.-T., Mentré F., Holford N. H., Veyrat-Follet C., Comets E., (2013). A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models. Pharmaceutical Statistics, 12, 129-140.
    • (2013) Pharmaceutical Statistics , vol.12 , pp. 129-140
    • Thai, H.-T.1    Mentré, F.2    Holford, N.H.3    Veyrat-Follet, C.4    Comets, E.5
  • 69
    • 84967152666 scopus 로고    scopus 로고
    • Effects of adolescent sociocognitive development on the cortisol response to social evaluation
    • van den Bos E., van Duijvenvoorde A. C. K., Westenberg P. M., (2016). Effects of adolescent sociocognitive development on the cortisol response to social evaluation. Developmental Psychology, 52, 1151-1163. doi:10.1037/dev0000133
    • (2016) Developmental Psychology , vol.52 , pp. 1151-1163
    • van den Bos, E.1    van Duijvenvoorde, A.C.K.2    Westenberg, P.M.3
  • 70
    • 84892351003 scopus 로고    scopus 로고
    • Resampling multilevel models
    • New York, NY, Springer,. In, (.,. Retrieved from
    • Van der Leeden R., Meijer E., Busing F. M., (2008). Resampling multilevel models. In Handbook of multilevel analysis (pp. 401-433). New York, NY: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-0-387-73186-5_11
    • (2008) Handbook of multilevel analysis , pp. 401-433
    • Van der Leeden, R.1    Meijer, E.2    Busing, F.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.