메뉴 건너뛰기




Volumn 2, Issue 1, 2013, Pages 1-17

Principled missing data methods for researchers

Author keywords

Em; Fiml; Listwise deletion; Mar; Mcar; Mi; Missing data; Mnar

Indexed keywords


EID: 84878809129     PISSN: None     EISSN: 21931801     Source Type: Journal    
DOI: 10.1186/2193-1801-2-222     Document Type: Review
Times cited : (1452)

References (70)
  • 2
    • 0004093524 scopus 로고    scopus 로고
    • Missing data
    • Sage Publications, Inc., Thousand Oaks, CA
    • Allison PD (2001) Missing data. Sage Publications, Inc., Thousand Oaks, CA
    • Allison, P.D.1
  • 3
    • 0345475379 scopus 로고    scopus 로고
    • Missing data techniques for structural equation modeling
    • doi:10.1037/0021-843x.112.4.545
    • Allison PD (2003) Missing data techniques for structural equation modeling. J Abnorm Psychol 112(4):545-557. doi:10.1037/0021-843x.112.4.545
    • (2003) J Abnorm Psychol , vol.112 , Issue.4 , pp. 545-557
    • Allison, P.D.1
  • 5
    • 2442736478 scopus 로고    scopus 로고
    • Small-sample degrees of freedom with multiple imputation
    • doi:10.1093/biomet/86.4.948
    • Barnard J, Rubin DB (1999) Small-sample degrees of freedom with multiple imputation. Biometrika 86(4):948-955. doi:10.1093/biomet/86.4.948
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 948-955
    • Barnard, J.1    Rubin, D.B.2
  • 6
    • 0034789746 scopus 로고    scopus 로고
    • How can I deal with missing data in my study?
    • doi:10.1111/j.1467-842X.2001.tb00294.x
    • Bennett DA (2001) How can I deal with missing data in my study? Aust N Z J Public Health 25(5):464-469.doi:10.1111/j.1467-842X.2001.tb00294.x
    • (2001) Aust N Z J Public Health , vol.25 , Issue.5 , pp. 464-469
    • Bennett, D.A.1
  • 7
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • doi:10.1002/sim.2619
    • Bernaards CA, Belin TR, Schafer JL (2007) Robustness of a multivariate normal approximation for imputation of incomplete binary data. Stat Med 26 (6):1368-1382.doi:10.1002/sim.2619
    • (2007) Stat Med , vol.26 , Issue.6 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 9
    • 84856274182 scopus 로고    scopus 로고
    • REALCOM-IMPUTE software for multilevel multiple imputation with mixed response types
    • Carpenter JR, Goldstein H, Kenward MG (2011) REALCOM-IMPUTE software for multilevel multiple imputation with mixed response types. J Stat Softw 45(5):1-14
    • (2011) J Stat Softw , vol.45 , Issue.5 , pp. 1-14
    • Carpenter, J.R.1    Goldstein, H.2    Kenward, M.G.3
  • 10
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • doi:10.1037/1082-989X.6.4.330
    • Collins LM, Schafer JL, Kam C-M (2001) A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Meth 6(4):330-351.doi:10.1037/1082-989X.6.4.330
    • (2001) Psychol Meth , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 12
    • 38349186156 scopus 로고    scopus 로고
    • Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: A simulation assessment
    • doi:10.1080/10629360600903866
    • Demirtas H, Freels SA, Yucel RM (2008) Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment. JSCS 78(1):69-84.doi:10.1080/10629360600903866
    • (2008) JSCS , vol.78 , Issue.1 , pp. 69-84
    • Demirtas, H.1    Freels, S.A.2    Yucel, R.M.3
  • 13
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm
    • doi:10.2307/ 2984875
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Series 39(1):1-38.doi:10.2307/ 2984875
    • (1977) J R Stat Soc Series , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 15
    • 0002543932 scopus 로고    scopus 로고
    • A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data
    • doi:10.1207/ S15328007SEM0801_7
    • Enders CK (2001) A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data. Struct Equ Modeling 8(1):128-141.doi:10.1207/ S15328007SEM0801_7
    • (2001) Struct Equ Modeling , vol.8 , Issue.1 , pp. 128-141
    • Enders, C.K.1
  • 16
    • 0142073292 scopus 로고    scopus 로고
    • Using the Expectation Maximization Algorithm to Estimate Coefficient Alpha for Scales With Item-Level Missing Data
    • doi:10.1037/1082-989X.8.3.322
    • Enders CK (2003) Using the Expectation Maximization Algorithm to Estimate Coefficient Alpha for Scales With Item-Level Missing Data. Psychol Meth 8 (3):322-337.doi:10.1037/1082-989X.8.3.322
    • (2003) Psychol Meth , vol.8 , Issue.3 , pp. 322-337
    • Enders, C.K.1
  • 18
    • 0000885702 scopus 로고    scopus 로고
    • The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models
    • doi:10.1207/ S15328007SEM0803_5
    • Enders CK, Bandalos DL (2001) The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models. Struct Equ Modeling l 8(3):430-457.doi:10.1207/ S15328007SEM0803_5
    • (2001) Struct Equ Modeling L , vol.8 , Issue.3 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 19
    • 0347249765 scopus 로고    scopus 로고
    • Adding Missing-Data-Relevant Variables to FIML-Based Structural Equation Models
    • doi:10.1207/ S15328007SEM1001_4
    • Graham JW (2003) Adding Missing-Data-Relevant Variables to FIML-Based Structural Equation Models. Struct Equ Modeling 10(1):80-100.doi:10.1207/ S15328007SEM1001_4
    • (2003) Struct Equ Modeling , vol.10 , Issue.1 , pp. 80-100
    • Graham, J.W.1
  • 20
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • doi:10.1146/annurev.psych.58.110405.085530
    • Graham JW (2009) Missing data analysis: Making it work in the real world. Annu Rev Psychol 60:549-576.doi:10.1146/annurev.psych.58.110405.085530
    • (2009) Annu Rev Psychol , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 21
    • 34548451124 scopus 로고    scopus 로고
    • How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory
    • doi:10.1007/s11121-007-0070-9
    • Graham JW, Olchowski A, Gilreath T (2007) How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory. Prev Sci 8(3):206-213.doi:10.1007/s11121-007-0070-9
    • (2007) Prev Sci , vol.8 , Issue.3 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.2    Gilreath, T.3
  • 22
    • 0000996385 scopus 로고
    • The Analysis of Incomplete Data
    • doi:10.2307/2528820
    • Hartley HO, Hocking RR (1971) The Analysis of Incomplete Data. Biometrics 27(4):783-823.doi:10.2307/2528820
    • (1971) Biometrics , vol.27 , Issue.4 , pp. 783-823
    • Hartley, H.O.1    Hocking, R.R.2
  • 23
    • 0002467683 scopus 로고
    • Multiple imputation for the fatal accident reporting system
    • Heitjan DF, Little RJ (1991) Multiple imputation for the fatal accident reporting system. Appl Stat 40:13-29
    • (1991) Appl Stat , vol.40 , pp. 13-29
    • Heitjan, D.F.1    Little, R.J.2
  • 24
    • 33846873244 scopus 로고    scopus 로고
    • Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models
    • doi:10.1198/000313007X172556
    • Horton NJ, Kleinman KP (2007) Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models. Am Stat 61(1):79-90.doi:10.1198/000313007X172556
    • (2007) Am Stat , vol.61 , Issue.1 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 25
    • 23044525261 scopus 로고    scopus 로고
    • Multiple Imputation in Practice
    • doi:10.1198/000313001317098266
    • Horton NJ, Lipsitz SR (2001) Multiple Imputation in Practice. Am Stat 55(3):244-254. doi:10.1198/000313001317098266
    • (2001) Am Stat , vol.55 , Issue.3 , pp. 244-254
    • Horton, N.J.1    Lipsitz, S.R.2
  • 26
    • 0242710940 scopus 로고    scopus 로고
    • A Potential for Bias When Rounding in Multiple Imputation
    • doi:10.1198/0003130032314
    • Horton NJ, Lipsitz SR, Parzen M (2003) A Potential for Bias When Rounding in Multiple Imputation. Am Stat 57(4):229-232.doi:10.1198/0003130032314
    • (2003) Am Stat , vol.57 , Issue.4 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 27
    • 84970206262 scopus 로고
    • Behavioral and emotional risk in early adolescents
    • doi:10.1177/0272431689094002
    • Ingersoll GM, Orr DP (1989) Behavioral and emotional risk in early adolescents. J Early Adolesc 9(4):396-408.doi:10.1177/0272431689094002
    • (1989) J Early Adolesc , vol.9 , Issue.4 , pp. 396-408
    • Ingersoll, G.M.1    Orr, D.P.2
  • 28
    • 21144471042 scopus 로고
    • Frequent somatic complaints and psychosocial risk in adolescents
    • doi:10.1177/ 0272431693013001004
    • Ingersoll GM, Grizzle K, Beiter M, Orr DP (1993) Frequent somatic complaints and psychosocial risk in adolescents. J Early Adolesc 13(1):67-78.doi:10.1177/ 0272431693013001004
    • (1993) J Early Adolesc , vol.13 , Issue.1 , pp. 67-78
    • Ingersoll, G.M.1    Grizzle, K.2    Beiter, M.3    Orr, D.P.4
  • 29
    • 34347396774 scopus 로고    scopus 로고
    • Multiple imputation: Current perspectives
    • doi:10.1177/0962280206075304
    • Kenward MG, Carpenter J (2007) Multiple imputation: current perspectives. Stat Methods in Med Res 16(3):199-218.doi:10.1177/0962280206075304
    • (2007) Stat Methods In Med Res , vol.16 , Issue.3 , pp. 199-218
    • Kenward, M.G.1    Carpenter, J.2
  • 32
  • 33
    • 77952320346 scopus 로고    scopus 로고
    • OECD, Second Edition. OECD Publishing, Paris, doi:10.1787/9789264056275-en
    • OECD (2009) PISA Data Analysis Manual: SPSS, Second Edition. OECD Publishing, Paris.doi:10.1787/9789264056275-en
    • (2009) PISA Data Analysis Manual: SPSS
  • 34
    • 3042806444 scopus 로고    scopus 로고
    • Using multinomial logistic models to predict adolescent behavioral risk
    • Peng CYJ, Nichols RN (2003) Using multinomial logistic models to predict adolescent behavioral risk. J Mod App Stat 2(1):177-188
    • (2003) J Mod App Stat , vol.2 , Issue.1 , pp. 177-188
    • Peng, C.Y.J.1    Nichols, R.N.2
  • 35
    • 37648999130 scopus 로고    scopus 로고
    • Comparison of two approaches for handling missing covariates in logistic regression
    • doi:10.1177/ 0013164407305582
    • Peng CYJ, Zhu J (2008) Comparison of two approaches for handling missing covariates in logistic regression. Educ Psychol Meas 68(1):58-77.doi:10.1177/ 0013164407305582
    • (2008) Educ Psychol Meas , vol.68 , Issue.1 , pp. 58-77
    • Peng, C.Y.J.1    Zhu, J.2
  • 36
    • 37649018305 scopus 로고    scopus 로고
    • Advances in missing data methods and implications for educational research
    • In: Sawilowsky SS, Charlotte, North Carolina
    • Peng CYJ, Harwell M, Liou SM, Ehman LH (2006) Advances in missing data methods and implications for educational research. In: Sawilowsky SS (ed) Real data analysis. Information Age Pub, Charlotte, North Carolina, pp 31-78
    • (2006) Real Data Analysis. Information Age Pub , pp. 31-78
    • Peng, C.Y.J.1    Harwell, M.2    Liou, S.M.3    Ehman, L.H.4
  • 37
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • Peugh JL, Enders CK (2004) Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of educational research 74(4):525-556
    • (2004) Review of Educational Research , vol.74 , Issue.4 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 38
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan TE, Lepkowski JM, van Hoewyk J, Solenberger P (2001) A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27(1):85-96
    • (2001) Survey Methodology , vol.27 , Issue.1 , pp. 85-96
    • Raghunathan, T.E.1    Lepkowski, J.M.2    van Hoewyk, J.3    Solenberger, P.4
  • 39
    • 0027421177 scopus 로고
    • The impact of caring and connectedness on adolescent health and well-being
    • doi:10.1111/j.1440-1754.1993.tb02257.x
    • Resnick MD, Harris LJ, Blum RW (1993) The impact of caring and connectedness on adolescent health and well-being. J Paediatr Child Health 29(Suppl 1):3-9.doi:10.1111/j.1440-1754.1993.tb02257.x
    • (1993) J Paediatr Child Health , vol.29 , Issue.SUPPL. 1 , pp. 3-9
    • Resnick, M.D.1    Harris, L.J.2    Blum, R.W.3
  • 41
    • 20344370565 scopus 로고    scopus 로고
    • Multiple imputation of missing values
    • Royston P (2004) Multiple imputation of missing values. SJ 4(3):227-241
    • (2004) SJ , vol.4 , Issue.3 , pp. 227-241
    • Royston, P.1
  • 42
    • 33646501982 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Update of ice
    • Royston P (2005) Multiple imputation of missing values: Update of ice. SJ 5(4):527-536
    • (2005) SJ , vol.5 , Issue.4 , pp. 527-536
    • Royston, P.1
  • 43
    • 43749105785 scopus 로고    scopus 로고
    • Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring
    • Royston P (2007) Multiple imputation of missing values: further update of ice, with an emphasis on interval censoring. SJ 7(4):445-464
    • (2007) SJ , vol.7 , Issue.4 , pp. 445-464
    • Royston, P.1
  • 44
    • 84856270792 scopus 로고    scopus 로고
    • Multiple Imputation by Chained Equations (MICE): Implementation in Stata
    • Royston P, White IR (2011) Multiple Imputation by Chained Equations (MICE): Implementation in Stata. J Stat Softw 45(4):1-20
    • (2011) J Stat Softw , vol.45 , Issue.4 , pp. 1-20
    • Royston, P.1    White, I.R.2
  • 45
    • 0017133178 scopus 로고
    • Inference and missing data
    • doi:10.1093/biomet/63.3.581
    • Rubin DB (1976) Inference and missing data. Biometrika 63(3):581-592. doi:10.1093/biomet/63.3.581
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 47
    • 0030539070 scopus 로고    scopus 로고
    • Multiple Imputation after 18+ Years
    • doi:10.1080/01621459.1996.10476908
    • Rubin DB (1996) Multiple Imputation after 18+ Years. JASA 91:473-489. doi:10.1080/01621459.1996.10476908
    • (1996) JASA , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 48
    • 85080003754 scopus 로고    scopus 로고
    • SAS Institute Inc, SAS/STAT 9.3 User's Guide. SAS Institute Inc, Cary, NC
    • SAS Institute Inc (2011) SAS/STAT 9.3 User's Guide. SAS Institute Inc, Cary, NC
    • (2011)
  • 50
    • 0032960273 scopus 로고    scopus 로고
    • Multiple imputation: A primer
    • doi:10.1177/096228029900800102
    • Schafer JL (1999) Multiple imputation: a primer. Stat Methods in Med 8(1):3-15. doi:10.1177/096228029900800102
    • (1999) Stat Methods In Med , vol.8 , Issue.1 , pp. 3-15
    • Schafer, J.L.1
  • 51
    • 0004211748 scopus 로고    scopus 로고
    • Multiple imputation with PAN
    • Collins LM, Sayer AG (ed) New methods for the analysis of change, Washington, DC
    • Schafer JL (2001) Multiple imputation with PAN. In: Collins LM, Sayer AG (ed) New methods for the analysis of change. American Psychological Association, Washington, DC, pp 353-377
    • (2001) American Psychological Association , pp. 353-377
    • Schafer, J.L.1
  • 52
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • doi:10.1037/1082-989X.7.2.147
    • Schafer JL, Graham JW (2002) Missing data: Our view of the state of the art. Psychol Meth 7(2):147-177.doi:10.1037/1082-989X.7.2.147
    • (2002) Psychol Meth , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 53
    • 0032219074 scopus 로고    scopus 로고
    • Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective
    • doi:10.1207/s15327906mbr3304_5
    • Schafer JL, Olsen MK (1998) Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective. Multivar Behav Res 33(4):545-571.doi:10.1207/s15327906mbr3304_5
    • (1998) Multivar Behav Res , vol.33 , Issue.4 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 54
    • 0030207783 scopus 로고    scopus 로고
    • Partially parametric techniques for multiple imputation
    • Schenker N, Taylor JMG (1996) Partially parametric techniques for multiple imputation. Comput Stat Data Anal 22(4):425-446.doi:http://dx.doi.org/ 10.1016/0167-9473(95)00057-7
    • (1996) Comput Stat Data Anal , vol.22 , Issue.4 , pp. 425-446
    • Schenker, N.1    Taylor, J.M.G.2
  • 55
    • 76449093819 scopus 로고    scopus 로고
    • Best practices for missing data management in counseling psychology
    • doi:10.1037/a0018082
    • Schlomer GL, Bauman S, Card NA (2010) Best practices for missing data management in counseling psychology. J Couns Psychol 57(1):1-10.doi:10.1037/a0018082
    • (2010) J Couns Psychol , vol.57 , Issue.1 , pp. 1-10
    • Schlomer, G.L.1    Bauman, S.2    Card, N.A.3
  • 56
    • 0035748192 scopus 로고    scopus 로고
    • The use of multiple imputation for the analysis of missing data
    • doi:10.1037/1082- 989X.6.4.317
    • Sinharay S, Stern HS, Russell D (2001) The use of multiple imputation for the analysis of missing data. Psychol Meth 6(4):317-329.doi:10.1037/1082- 989X.6.4.317
    • (2001) Psychol Meth , vol.6 , Issue.4 , pp. 317-329
    • Sinharay, S.1    Stern, H.S.2    Russell, D.3
  • 58
    • 84950758368 scopus 로고
    • The Calculation of Posterior Distributions by Data Augmentation
    • doi:10.1080/01621459.1987.10478458
    • Tanner MA, Wong WH (1987) The Calculation of Posterior Distributions by Data Augmentation. JASA 82(398):528-540.doi:10.1080/01621459.1987.10478458
    • (1987) JASA , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 60
    • 34347407592 scopus 로고    scopus 로고
    • Multiple imputation of discrete and continuous data by fully conditional specification
    • doi:10.1177/0962280206074463
    • van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods in Med Res 16(3):219-242.doi:10.1177/0962280206074463
    • (2007) Stat Methods In Med Res , vol.16 , Issue.3 , pp. 219-242
    • van Buuren, S.1
  • 61
    • 79953732420 scopus 로고    scopus 로고
    • mice: Multivariate Imputation by Chained Equations
    • van Buuren S, Groothuis-Oudshoorn K (2011) mice: Multivariate Imputation by Chained Equations in R. J Stat Softw 45(3):1-67
    • (2011) R. J Stat Softw , vol.45 , Issue.3 , pp. 1-67
    • van Buuren, S.1    Groothuis-Oudshoorn, K.2
  • 62
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • doi:10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
    • van Buuren S, Boshuizen HC, Knook DL (1999) Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 18(6):681-694.doi:10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R
    • (1999) Stat Med , vol.18 , Issue.6 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 63
    • 33751583679 scopus 로고    scopus 로고
    • Fully conditional specification in multivariate imputation
    • doi:10.1080/10629360600810434
    • van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB (2006) Fully conditional specification in multivariate imputation. JSCS 76(12):1049-1064.doi:10.1080/10629360600810434
    • (2006) JSCS , vol.76 , Issue.12 , pp. 1049-1064
    • van Buuren, S.1    Brand, J.P.L.2    Groothuis-Oudshoorn, C.G.M.3    Rubin, D.B.4
  • 64
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • doi:10.1002/sim.4067
    • White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: Issues and guidance for practice. Stat Med 30(4):377-399.doi:10.1002/sim.4067
    • (2011) Stat Med , vol.30 , Issue.4 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 65
    • 0001653457 scopus 로고    scopus 로고
    • Statistical methods in psychology journals: Guidelines and explanations
    • the Task Force on Statistical Inference, doi:10.1037/0003-066X.54.8.594
    • Wilkinson L, the Task Force on Statistical Inference (1999) Statistical methods in psychology journals: Guidelines and explanations. Am Psychol 54(8):594-604.doi:10.1037/0003-066X.54.8.594
    • (1999) Am Psychol , vol.54 , Issue.8 , pp. 594-604
    • Wilkinson, L.1
  • 66
    • 0001972601 scopus 로고
    • The large-sample distribution of the likelihood ratio for testing composite hypotheses
    • Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Statist 9(1):60-62
    • (1938) Ann Math Statist , vol.9 , Issue.1 , pp. 60-62
    • Wilks, S.S.1
  • 67
    • 77955028130 scopus 로고    scopus 로고
    • Self-efficacy and performance in mathematics: Reciprocal determinism in 33 nations
    • doi:10.1037/a0017271
    • Williams T, Williams K (2010) Self-efficacy and performance in mathematics: Reciprocal determinism in 33 nations. J Educ Psychol 102(2):453-466.doi:10.1037/a0017271
    • (2010) J Educ Psychol , vol.102 , Issue.2 , pp. 453-466
    • Williams, T.1    Williams, K.2
  • 69
    • 84856249157 scopus 로고    scopus 로고
    • Multiple imputation
    • Yucel R (ed) (2011) Multiple imputation. J Stat Softw 45:1
    • (2011) J Stat Softw , vol.45 , pp. 1
    • Yucel, R.1
  • 70
    • 84878810015 scopus 로고    scopus 로고
    • Making use of incomplete observations in the analysis of structural equation models: The CALIS procedure's full information maximum likelihood method in SAS/STAT® 9.3
    • SAS Institute Inc, Cary, NC
    • Yung Y, Zhang W (2011) Making use of incomplete observations in the analysis of structural equation models: The CALIS procedure's full information maximum likelihood method in SAS/STAT® 9.3. In: Proceedings of the SAS® Global Forum 2011Conference. SAS Institute Inc, Cary, NC
    • (2011) Proceedings of the SAS® Global Forum 2011Conference
    • Yung, Y.1    Zhang, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.