메뉴 건너뛰기




Volumn 38, Issue 16, 2017, Pages 4700-4721

Mapping vegetation and land cover in a large urban area using a multiple classifier system

Author keywords

[No Author keywords available]

Indexed keywords

ENVIRONMENTAL MANAGEMENT; IMAGE CLASSIFICATION; IMAGE ENHANCEMENT; MAPPING; REMOTE SENSING; SUSTAINABLE DEVELOPMENT; VEGETATION;

EID: 85040933130     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2017.1331059     Document Type: Article
Times cited : (14)

References (73)
  • 1
    • 77049085238 scopus 로고    scopus 로고
    • Landscape and Well-Being: A Scoping Study on the Health-Promoting Impact of Outdoor Environments
    • Abraham, A., K. Sommerhalder, and T. Abel. 2010. “Landscape and Well-Being: A Scoping Study on the Health-Promoting Impact of Outdoor Environments.” International Journal of Public Health 55 (1): 59–69. doi:10.1007/s00038-009-0069-z.
    • (2010) International Journal of Public Health , vol.55 , Issue.1 , pp. 59-69
    • Abraham, A.1    Sommerhalder, K.2    Abel, T.3
  • 2
    • 84901651305 scopus 로고    scopus 로고
    • Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using Rapideye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers
    • Adam, E., O. Mutanga, J. Odindi, and E. M. Abdel-Rahman. 2014. “Land-Use/Cover Classification in a Heterogeneous Coastal Landscape Using Rapideye Imagery: Evaluating the Performance of Random Forest and Support Vector Machines Classifiers.” International Journal of Remote Sensing 35 (10): 3440–3458. doi:10.1080/01431161.2014.903435.
    • (2014) International Journal of Remote Sensing , vol.35 , Issue.10 , pp. 3440-3458
    • Adam, E.1    Mutanga, O.2    Odindi, J.3    Abdel-Rahman, E.M.4
  • 5
    • 85027261921 scopus 로고    scopus 로고
    • Atlanta Regional Commission (ARC). 2010. “The Atlanta Region.” http://www.atlantaregional.com
    • (2010) The Atlanta Region
  • 6
    • 0032635034 scopus 로고    scopus 로고
    • Classification of Multisource and Hyperspectral Data Based on Decision Fusion
    • Benediktsson, J. A., and I. Kanellopoulos. 1999. “Classification of Multisource and Hyperspectral Data Based on Decision Fusion.” IEEE Transactions on Geoscience and Remote Sensing 37 (3): 1367–1377. doi:10.1109/36.763301.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.3 , pp. 1367-1377
    • Benediktsson, J.A.1    Kanellopoulos, I.2
  • 7
    • 37249003229 scopus 로고    scopus 로고
    • Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments
    • Springer Berlin Heidelberg
    • Benediktsson, J. A., J. Chanussot, and M. Fauvel. 2007. “Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments.” Multiple Classifier Systems 501–512. Springer Berlin Heidelberg. doi:10.1007/978-3-540-72523-7_50.
    • (2007) Multiple Classifier Systems , pp. 501-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 9
    • 79952315022 scopus 로고    scopus 로고
    • Multiple Classifier Systems for Robust Classifier Design in Adversarial Environments
    • Biggio, B., G. Fumera, and F. Roli. 2010. “Multiple Classifier Systems for Robust Classifier Design in Adversarial Environments.” International Journal of Machine Learning and Cybernetics 1 (1–4): 27–41. doi:10.1007/s13042-010-0007-7.
    • (2010) International Journal of Machine Learning and Cybernetics , vol.1 , Issue.1-4 , pp. 27-41
    • Biggio, B.1    Fumera, G.2    Roli, F.3
  • 11
    • 0033047396 scopus 로고    scopus 로고
    • Ecosystem Services in Urban Areas
    • Bolund, P., and S. Hunhammar. 1999. “Ecosystem Services in Urban Areas.” Ecological Economics 29: 293–301. doi:10.1016/S0921-8009(99)00013-0.
    • (1999) Ecological Economics , vol.29 , pp. 293-301
    • Bolund, P.1    Hunhammar, S.2
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–140. doi:10.1023/A:1018054314350.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 0036762743 scopus 로고    scopus 로고
    • A Multiple-Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps
    • Bruzzone, L., and R. Cossu. 2002. “A Multiple-Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps.” IEEE Transactions on Geoscience and Remote Sensing 40 (9): 1984–1996. doi:10.1109/TGRS.2002.803794.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 16
    • 79958710628 scopus 로고    scopus 로고
    • Classifier Combination and Score Level Fusion: Concepts and Practical Aspects
    • Chitroub, S. 2010. “Classifier Combination and Score Level Fusion: Concepts and Practical Aspects.” International Journal of Image and Data Fusion 1 (2): 113–135. doi:10.1080/19479830903561944.
    • (2010) International Journal of Image and Data Fusion , vol.1 , Issue.2 , pp. 113-135
    • Chitroub, S.1
  • 17
    • 0010458830 scopus 로고
    • Statistical Independence and Threshold Functions
    • Chow, C. K. 1965. “Statistical Independence and Threshold Functions.” IEEE Transactions on Electronic Computers 1: 66–68. doi:10.1109/PGEC.1965.264059.
    • (1965) IEEE Transactions on Electronic Computers , Issue.1 , pp. 66-68
    • Chow, C.K.1
  • 18
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • Congalton, R. G. 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 20
    • 84948709569 scopus 로고    scopus 로고
    • Quantifying Urban Ecosystem Services Based on High-Resolution Data of Urban Green Space: An Assessment for Rotterdam, the Netherlands
    • Derkzen, M. L., A. J. Van Teeffelen, and P. H. Verburg. 2015. “Quantifying Urban Ecosystem Services Based on High-Resolution Data of Urban Green Space: An Assessment for Rotterdam, the Netherlands.” Journal of Applied Ecology 52 (4): 1020–1032. doi:10.1111/1365-2664.12469.
    • (2015) Journal of Applied Ecology , vol.52 , Issue.4 , pp. 1020-1032
    • Derkzen, M.L.1    van Teeffelen, A.J.2    Verburg, P.H.3
  • 21
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral Landuse Classification Using Neural Networks and Support Vector Machines: One or the Other, or Both?
    • Dixon, B., and N. Candade. 2008. “Multispectral Landuse Classification Using Neural Networks and Support Vector Machines: One or the Other, or Both?” International Journal of Remote Sensing 29 (4): 1185–1206. doi:10.1080/01431160701294661.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.4 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 22
    • 84860267020 scopus 로고    scopus 로고
    • Multiple Classifier System for Remote Sensing Image Classification: A Review
    • Du, P., J. Xia, W. Zhang, K. Tan, Y. Liu, and S. Liu. 2012. “Multiple Classifier System for Remote Sensing Image Classification: A Review.” Sensors 12 (4): 4764–4792. doi:10.3390/s120404764.
    • (2012) Sensors , vol.12 , Issue.4 , pp. 4764-4792
    • Du, P.1    Xia, J.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.6
  • 24
    • 85045983140 scopus 로고    scopus 로고
    • Atmospheric Correction Module: QUAC and FLAASH User’s Guide
    • ENVI. 2009. “Atmospheric Correction Module: QUAC and FLAASH User’s Guide. ” Accessed: January 1, 2015. https://www.exelisvis.com/portals/0/pdfs/envi/Flaash_Module.pdf
    • (2009) Accessed: January , vol.1 , pp. 2015
  • 26
    • 0028167313 scopus 로고
    • Assessing the Classification Accuracy of Multisource Remote Sensing Data
    • Fitzgerald, R. W., and B. G. Lees. 1994. “Assessing the Classification Accuracy of Multisource Remote Sensing Data.” Remote Sensing of Environment 47 (3): 362–368. doi:10.1016/0034-4257(94) 90103-1.
    • (1994) Remote Sensing of Environment , vol.47 , Issue.3 , pp. 362-368
    • Fitzgerald, R.W.1    Lees, B.G.2
  • 27
    • 33745756516 scopus 로고    scopus 로고
    • The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification: Training on Mixed Spectral Responses for Classification by a SVM
    • Foody, G. M., and A. Mathur. 2006. “The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification: Training on Mixed Spectral Responses for Classification by a SVM.” Remote Sensing of Environment 103 (2): 179–189. doi:10.1016/j.rse.2006.04.001.
    • (2006) Remote Sensing of Environment , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 28
    • 0035420134 scopus 로고    scopus 로고
    • Design of Effective Neural Network Ensembles for Image Classification Processes
    • Giacinto, G., and F. Roli. 2001. “Design of Effective Neural Network Ensembles for Image Classification Processes.” Image Vision and Computing Journal 19 ((9–10)): 699–707. doi:10.1016/S0262-8856(01)00045-2.
    • (2001) Image Vision and Computing Journal , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 29
    • 0034072495 scopus 로고    scopus 로고
    • Combination of Neural and Statistical Algorithms for Supervised Classification of Remote-Sensing Images
    • Giacinto, G., F. Roli, and L. Bruzzone. 2000. “Combination of Neural and Statistical Algorithms for Supervised Classification of Remote-Sensing Images.” Pattern Recognition Letters 21 (5): 385–397. doi:10.1016/S0167-8655(00)00006-4.
    • (2000) Pattern Recognition Letters , vol.21 , Issue.5 , pp. 385-397
    • Giacinto, G.1    Roli, F.2    Bruzzone, L.3
  • 30
    • 84865427954 scopus 로고    scopus 로고
    • A Review of Large Area Monitoring of Land Cover Change Using Landsat Data
    • Hansen, M. C., and T. R. Loveland. 2012. “A Review of Large Area Monitoring of Land Cover Change Using Landsat Data.” Remote Sensing of Environment 122 66–74. doi:10.1016/j. rse.2011.08.024.
    • (2012) Remote Sensing of Environment , vol.122 , pp. 66-74
    • Hansen, M.C.1    Loveland, T.R.2
  • 36
    • 0036789609 scopus 로고    scopus 로고
    • Integration of Lidar and Landsat ETM+ Data for Estimating and Mapping Forest Canopy Height
    • Hudak, A. T., M. A. Lefsky, W. B. Cohen, and M. Berterretche. 2002. “Integration of Lidar and Landsat ETM+ Data for Estimating and Mapping Forest Canopy Height.” Remote Sensing of Environment 82 (2): 397–416. doi:10.1016/S0034-4257(02)00056-1.
    • (2002) Remote Sensing of Environment , vol.82 , Issue.2 , pp. 397-416
    • Hudak, A.T.1    Lefsky, M.A.2    Cohen, W.B.3    Berterretche, M.4
  • 39
    • 0032986310 scopus 로고    scopus 로고
    • Remote Sensing of Urban/Suburban Infrastructure and Socio- Economic Attributes
    • Jensen, J. R., and D. C. Cowen. 1999. “Remote Sensing of Urban/Suburban Infrastructure and Socio- Economic Attributes.” Photogrammetric Engineering and Remote Sensing 65: 611–622. doi:10.1002/9780470979587.ch22.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , pp. 611-622
    • Jensen, J.R.1    Cowen, D.C.2
  • 41
    • 0007729457 scopus 로고    scopus 로고
    • Kittler, J., and F. Roli, eds., Springer-Verlag Berlin Heidelberg
    • Kittler, J., and F. Roli, eds. 2000. Multiple Classifier Systems. Springer-Verlag Berlin Heidelberg.
    • (2000) Multiple Classifier Systems
  • 44
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis
    • Kumar, S., J. Ghosh, and M. M. Crawford. 2002. “Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis.” Pattern Analysis & Applications 5 (2): 210–220. doi:10.1007/s100440200019.
    • (2002) Pattern Analysis & Applications , vol.5 , Issue.2 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 45
    • 0037403516 scopus 로고    scopus 로고
    • Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy
    • Kuncheva, L. I., and C. J. Whitaker. 2003. “Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy.” Machine Learning 51 (2): 181–207. doi:10.1023/A:1022859003006.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 46
    • 0029373189 scopus 로고
    • Optimal Combinations of Pattern Classifiers
    • Lam, L., and C. Y. Suen. 1995. “Optimal Combinations of Pattern Classifiers.” Pattern Recognition Letters 16 (9): 945–954. doi:10.1016/0167-8655(95)00050-Q.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.9 , pp. 945-954
    • Lam, L.1    Suen, C.Y.2
  • 47
    • 84920265618 scopus 로고    scopus 로고
    • Incorporating Land Use Land Cover Probability Information into Endmember Class Selections for Temporal Mixture Analysis
    • Li, W., and C. Wu. 2015. “Incorporating Land Use Land Cover Probability Information into Endmember Class Selections for Temporal Mixture Analysis.” ISPRS Journal of Photogrammetry and Remote Sensing 101: 163–173. doi:10.1016/j.isprsjprs.2014.12.007.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.101 , pp. 163-173
    • Li, W.1    Wu, C.2
  • 48
    • 84875589284 scopus 로고    scopus 로고
    • Mapping Vegetation in an Urban Area with Stratified Classification and Multiple Endmember Spectral Mixture Analysis
    • Liu, T., and X. Yang. 2013. “Mapping Vegetation in an Urban Area with Stratified Classification and Multiple Endmember Spectral Mixture Analysis.” Remote Sensing of Environment 133: 251–264. doi:10.1016/j.rse.2013.02.020.
    • (2013) Remote Sensing of Environment , vol.133 , pp. 251-264
    • Liu, T.1    Yang, X.2
  • 49
    • 0036070556 scopus 로고    scopus 로고
    • Integration of Classification Methods for Improvement of Land-Cover Map Accuracy
    • Liu, X. H., A. K. Skidmore, and H. Van Oosten. 2002. “Integration of Classification Methods for Improvement of Land-Cover Map Accuracy.” ISPRS Journal of Photogrammetry and Remote Sensing 56 (4): 257–268. doi:10.1016/S0924-2716(02)00061-8.
    • (2002) ISPRS Journal of Photogrammetry and Remote Sensing , vol.56 , Issue.4 , pp. 257-268
    • Liu, X.H.1    Skidmore, A.K.2    van Oosten, H.3
  • 50
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • Lu, D., and Q. Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28: 823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 51
    • 33747130710 scopus 로고    scopus 로고
    • Urban Vegetation Mapping Using Sub-Pixel Analysis and Expert System Rules: A Critical Approach
    • Myint, S. W. 2006. “Urban Vegetation Mapping Using Sub-Pixel Analysis and Expert System Rules: A Critical Approach.” International Journal of Remote Sensing 27 (13): 2645–2665. doi:10.1080/01431160500534630.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.13 , pp. 2645-2665
    • Myint, S.W.1
  • 52
    • 79952070569 scopus 로고    scopus 로고
    • Per-Pixel Vs. Object- Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery
    • Myint, S. W., P. Gober, A. Brazel, S. Grossman-Clarke, and Q. Weng. 2011. “ Per-Pixel Vs. Object- Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery.” Remote Sensing of Environment 115 (5): 1145–1161. doi:10.1016/j.rse.2010.12.017.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.5 , pp. 1145-1161
    • Myint, S.W.1    Gober, P.2    Brazel, A.3    Grossman-Clarke, S.4    Weng, Q.5
  • 53
    • 0035275048 scopus 로고    scopus 로고
    • People and Trees: Assessing the US Urban Forest Resource
    • Nowak, D. J., M. H. Noble, S. M. Sisinni, and J. F. Dwyer. 2001. “People and Trees: Assessing the US Urban Forest Resource.” Journal of Forestry 99 (3): 37–42.
    • (2001) Journal of Forestry , vol.99 , Issue.3 , pp. 37-42
    • Nowak, D.J.1    Noble, M.H.2    Sisinni, S.M.3    Dwyer, J.F.4
  • 55
    • 35348915328 scopus 로고    scopus 로고
    • Classifier Ensembles: Select Real-World Applications
    • Oza, N. C., and K. Tumer. 2008b. “Classifier Ensembles: Select Real-World Applications.” Information Fusion 9 (1): 4–20.
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 56
    • 84908042868 scopus 로고    scopus 로고
    • Mapping Carbon Storage in Urban Trees with Multi-Source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods
    • Raciti, S. M., L. R. Hutyra, and J. D. Newell. 2014. “Mapping Carbon Storage in Urban Trees with Multi-Source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods.” Science of the Total Environment 500: 72–83. doi:10.1016/j.scitotenv.2014.08.070.
    • (2014) Science of the Total Environment , vol.500 , Issue.72 , pp. 83
    • Raciti, S.M.1    Hutyra, L.R.2    Newell, J.D.3
  • 57
    • 84956994921 scopus 로고    scopus 로고
    • Methods for Designing Multiple Classifier Systems
    • edited by J. Kittler and F. Roli, Springer Berlin Heidelberg
    • Roli, F., G. Giacinto, and G. Vernazza. 2000. “Methods for Designing Multiple Classifier Systems.” In Multiple Classifier Systems, edited by J. Kittler and F. Roli, 78–87. Springer Berlin Heidelberg.
    • (2000) Multiple Classifier Systems , pp. 78-87
    • Roli, F.1    Giacinto, G.2    Vernazza, G.3
  • 59
    • 84988416232 scopus 로고    scopus 로고
    • An Assessment of Algorithmic Parameters Affecting Image Classification Accuracy by Random Forests
    • Shi, D., and X. Yang. 2016. “An Assessment of Algorithmic Parameters Affecting Image Classification Accuracy by Random Forests.” Photogrammetric Engineering and Remote Sensing 82 (6): 407–417. doi:10.14358/PERS.82.6.407.
    • (2016) Photogrammetric Engineering and Remote Sensing , vol.82 , Issue.6 , pp. 407-417
    • Shi, D.1    Yang, X.2
  • 60
    • 0036327649 scopus 로고    scopus 로고
    • Multitemporal Analysis of Urban Reflectance
    • Small, C. 2002. “Multitemporal Analysis of Urban Reflectance.” Remote Sensing of Environment 81 (2): 427–442. doi:10.1016/S0034-4257(02)00019-6.
    • (2002) Remote Sensing of Environment , vol.81 , Issue.2 , pp. 427-442
    • Small, C.1
  • 61
    • 0036543957 scopus 로고    scopus 로고
    • Multiple Classifier Systems for Supervised Remote Sensing Image Classification Based on Dynamic Classifier Selection
    • Smits, P. C. 2002. “Multiple Classifier Systems for Supervised Remote Sensing Image Classification Based on Dynamic Classifier Selection.” Geoscience and Remote Sensing IEEE Transactions On 40 (4): 801–813. doi:10.1109/TGRS.2002.1006354.
    • (2002) Geoscience and Remote Sensing IEEE Transactions On , vol.40 , Issue.4 , pp. 801-813
    • Smits, P.C.1
  • 62
    • 0034482007 scopus 로고    scopus 로고
    • Combining Multiple Classifiers: An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping
    • Steele, B. M. 2000. “Combining Multiple Classifiers: An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping.” Remote Sensing of Environment 74 (3): 545– 556. doi:10.1016/S0034-4257(00)00145-0.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 545-556
    • Steele, B.M.1
  • 63
    • 0019227654 scopus 로고
    • The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data
    • Strahler, A. H. 1980. “The Use of Prior Probabilities in Maximum Likelihood Classification of Remotely Sensed Data.” Remote Sensing of Environment 10 (2): 135–163. doi:10.1016/0034-4257(80)90011-5.
    • (1980) Remote Sensing of Environment , vol.10 , Issue.2 , pp. 135-163
    • Strahler, A.H.1
  • 64
    • 84960112657 scopus 로고    scopus 로고
    • Accessed: April 12, 2017
    • USGS, 2016. “Landsat 8 (L8) Data Users Handbook.” Accessed: April 12, 2017. https://landsat.usgs. gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf
    • (2016) Landsat 8 (L8) Data Users Handbook
  • 66
    • 69849104695 scopus 로고    scopus 로고
    • Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR Imagery
    • Waske, B., and M. Braun. 2009. “Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 64 (5): 450–457. doi:10.1016/j.isprsjprs.2009.01.003.
    • (2009) ISPRS Journal of Photogrammetry and Remote Sensing , vol.64 , Issue.5 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 67
    • 84887090067 scopus 로고    scopus 로고
    • A Survey of Multiple Classifier Systems as Hybrid Systems
    • Woźniak, M., M. Graña, and E. Corchado. 2014. “A Survey of Multiple Classifier Systems as Hybrid Systems.” Information Fusion 16: 3–17. doi:10.1016/j.inffus.2013.04.006.
    • (2014) Information Fusion , vol.16 , pp. 3-17
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 68
    • 10844244035 scopus 로고    scopus 로고
    • Using AVIRIS Data and Multiple-Masking Techniques to Map Urban Forest Tree Species
    • Xiao, Q., S. L. Ustin, and E. G. McPherson. 2004. “Using AVIRIS Data and Multiple-Masking Techniques to Map Urban Forest Tree Species.” International Journal of Remote Sensing 25 (24): 5637–5654. doi:10.1080/01431160412331291224.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.24 , pp. 5637-5654
    • Xiao, Q.1    Ustin, S.L.2    McPherson, E.G.3
  • 69
    • 0026860706 scopus 로고
    • Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition
    • Xu, L., A. Krzyzak, and C. Y. Suen. 1992. “Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition.” IEEE Transactions on Systems, Man, and Cybernetics 22 (3): 418–435.
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 70
    • 79960366556 scopus 로고    scopus 로고
    • Parameterizing Support Vector Machines for Land Cover Classification
    • Yang, X. 2011. “Parameterizing Support Vector Machines for Land Cover Classification.” Photogrammetric Engineering and Remote Sensing 77 (1): 27–37. doi:10.14358/PERS.77.1.27.
    • (2011) Photogrammetric Engineering and Remote Sensing , vol.77 , Issue.1 , pp. 27-37
    • Yang, X.1
  • 71
    • 0037052858 scopus 로고    scopus 로고
    • Using a Time Series of Satellite Imagery to Detect Land Use and Land Cover Changes in the Atlanta, Georgia Metropolitan Area
    • Yang, X., and C. P. Lo. 2002. “Using a Time Series of Satellite Imagery to Detect Land Use and Land Cover Changes in the Atlanta, Georgia Metropolitan Area.” International Journal of Remote Sensing 23 (9): 1775–1798. doi:10.1080/01431160110075802.
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.9 , pp. 1775-1798
    • Yang, X.1    Lo, C.P.2
  • 72
    • 33745615125 scopus 로고    scopus 로고
    • Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
    • Yu, Q., P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer. 2006. “Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery.” Photogrammetric Engineering and Remote Sensing 72 (7): 799–811. doi:10.14358/PERS.72.7.799.
    • (2006) Photogrammetric Engineering and Remote Sensing , vol.72 , Issue.7 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3    Biging, G.4    Kelly, M.5    Schirokauer, D.6
  • 73
    • 82955189785 scopus 로고    scopus 로고
    • An Assessment of Internal Neural Network Parameters Affecting Image Classification Accuracy
    • Zhou, L., and X. Yang. 2011. “An Assessment of Internal Neural Network Parameters Affecting Image Classification Accuracy.” Photogrammetric Engineering and Remote Sensing 77 (12): 1233– 1240. doi:10.14358/PERS.77.12.1233.
    • (2011) Photogrammetric Engineering and Remote Sensing , vol.77 , Issue.12 , pp. 1233-1240
    • Zhou, L.1    Yang, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.