메뉴 건너뛰기




Volumn 6, Issue , 2017, Pages 4261-4270

Curiosity-driven exploration by self-supervised prediction

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; LEARNING ALGORITHMS;

EID: 85040005905     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (793)

References (45)
  • 2
    • 85018889357 scopus 로고    scopus 로고
    • Learning to poke by poking: Experiential learning of intuitive physics
    • Agrawal, Pulkit, Nair, Ashvin, Abbeel, Pieter, Malik, Jitendra, and Levine, Sergey. Learning to poke by poking: Experiential learning of intuitive physics. NIPS, 2016.
    • (2016) NIPS
    • Agrawal, P.1    Nair, A.2    Abbeel, P.3    Malik, J.4    Levine, S.5
  • 4
    • 14344250818 scopus 로고    scopus 로고
    • R-max-a general polynomial time algorithm for near-optimal reinforcement learning
    • Brafman, Ronen I and Tennenholtz, Moshe. R-max-a general polynomial time algorithm for near-optimal reinforcement learning. JMLR, 2002.
    • (2002) JMLR
    • Brafman, R.I.1    Tennenholtz, M.2
  • 6
    • 84973916088 scopus 로고    scopus 로고
    • Unsupervised visual representation learning by context prediction
    • Doersch, Carl, Gupta, Abhinav, and Efros, Alexei A. Unsupervised visual representation learning by context prediction. In ICCV, 2015.
    • (2015) ICCV
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 7
    • 85031893333 scopus 로고    scopus 로고
    • Learning to act by predicting the future
    • Dosovitskiy, Alexey and Koltun, Vladlen. Learning to act by predicting the future. ICLR, 2016.
    • (2016) ICLR
    • Dosovitskiy, A.1    Koltun, V.2
  • 13
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representations tied to ego-motion
    • Jayaraman, Dinesh and Grauman, Kristen. Learning image representations tied to ego-motion. In ICCV, 2015.
    • (2015) ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 14
    • 44049116478 scopus 로고
    • Forward Models: Supervised learning with a distal, teacher
    • Jordan, Michael I and Rumelhart, David E. Forward models: Supervised learning with a distal teacher. Cognitive science, 1992.
    • (1992) Cognitive Science
    • Jordan, M.I.1    Rumelhart, D.E.2
  • 15
    • 84880677563 scopus 로고    scopus 로고
    • Efficient reinforcement learning in factored mdps
    • Kearns, Michael and Roller, Daphne. Efficient reinforcement learning in factored mdps. In IJCAI, 1999.
    • (1999) IJCAI
    • Kearns, M.1    Roller, D.2
  • 17
  • 20
    • 84877724875 scopus 로고    scopus 로고
    • Exploration in model-based reinforcement learning by empirically estimating learning progress
    • Lopes, Manuel, Lang, Tobias, Toussaint, Marc, and Oudeyer, Pierre-Yves. Exploration in model-based reinforcement learning by empirically estimating learning progress. In NIPS, 2012.
    • (2012) NIPS
    • Lopes, M.1    Lang, T.2    Toussaint, M.3    Oudeyer, P.-Y.4
  • 24
    • 84965128263 scopus 로고    scopus 로고
    • Variational information maximisation for intrinsically motivated reinforcement learning
    • Mohamed, Shakir and Rezende, Danilo Jimenez. Variational information maximisation for intrinsically motivated reinforcement learning. In NIPS, 2015.
    • (2015) NIPS
    • Mohamed, S.1    Rezende, D.J.2
  • 25
    • 84965178314 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in atari games
    • Oh, Junhyuk, Guo, Xiaoxiao, Lee, Honglak, Lewis, Richard L, and Singh, Satinder. Action-conditional video prediction using deep networks in atari games. In NIPS, 2015.
    • (2015) NIPS
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.L.4    Singh, S.5
  • 27
    • 84891105730 scopus 로고    scopus 로고
    • What is intrinsic motivation? a typology of computational approaches
    • Oudeycr, Pierre-Yves and Kaplan, Frederic. What is intrinsic motivation? a typology of computational approaches. Frontiers in neurorobotics, 2009.
    • (2009) Frontiers in Neurorobotics
    • Oudeycr, P.-Y.1    Kaplan, F.2
  • 28
  • 29
    • 85048545843 scopus 로고    scopus 로고
    • Super mario bros
    • github:ppaquette/gym-super-mario
    • Paquette, Philip. Super mario bros. In openai gym. github:ppaquette/gym-super-mario, 2016.
    • (2016) Openai Gym
    • Paquette, P.1
  • 31
    • 33749251297 scopus 로고    scopus 로고
    • An analytic solution to discrete Bayesian reinforcement learning
    • Poupart, Pascal, Vlassis, Nikos, Hoey, Jesse, and Regan, Kevin. An analytic solution to discrete bayesian reinforcement learning. In ICML, 2006.
    • (2006) ICML
    • Poupart, P.1    Vlassis, N.2    Hoey, J.3    Regan, K.4
  • 32
    • 0002209063 scopus 로고    scopus 로고
    • Intrinsic and extrinsic motivations: Classic definitions and new directions
    • Ryan, Richard; Deci, Edward L. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 2000.
    • (2000) Contemporary Educational Psychology
    • Ryan, R.1    Deci, E.L.2
  • 37
    • 84899031920 scopus 로고    scopus 로고
    • Intrinsically motivated reinforcement learning
    • Singh, Satinder P, Barto, Andrew G, and Chentanez, Nuttapong. Intrinsically motivated reinforcement learning. In NIPS, 2005.
    • (2005) NIPS
    • Singh, S.P.1    Barto, A.G.2    Chentanez, N.3
  • 38
    • 84959023524 scopus 로고    scopus 로고
    • In- centivizing exploration in reinforcement learning with deep predictive models
    • Stadie, Bradly C, Levine, Sergey, and Abbeel, Pieter. In- centivizing exploration in reinforcement learning with deep predictive models. NIPS Workshop, 2015.
    • (2015) NIPS Workshop
    • Stadie, B.C.1    Levine, S.2    Abbeel, P.3
  • 39
    • 84865114997 scopus 로고    scopus 로고
    • An information-theoretic approach to curiosity-driven reinforcement learning
    • Still, Susanne and Precup, Doina. An information-theoretic approach to curiosity-driven reinforcement learning. Theory in Biosciences, 2012.
    • (2012) Theory in Biosciences
    • Still, S.1    Precup, D.2
  • 40
    • 0010813872 scopus 로고
    • Reinforcement driven information acquisition in non- deterministic environments
    • Storck, Jan, Hochreiter, Sepp, and Schmidhuber, Jurgen. Reinforcement driven information acquisition in non- deterministic environments. In ICANN, 1995.
    • (1995) ICANN
    • Storck, J.1    Hochreiter, S.2    Schmidhuber, J.3
  • 42
    • 79961180493 scopus 로고    scopus 로고
    • Planning to be Surprised: Optimal Bayesian exploration in dynamic environments
    • Sun, Yi, Gomez, Faustino, and Schmidhuber, Jurgen. Planning to be surprised: Optimal bayesian exploration in dynamic environments. In AGI, 2011.
    • (2011) AGI
    • Sun, Y.1    Gomez, F.2    Schmidhuber, J.3
  • 44
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • Wang, Xiaolong and Gupta, Abhinav. Unsupervised learning of visual representations using videos. In ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.