-
1
-
-
41349091869
-
Gene function prediction using labeled and unlabeled data
-
Zhao X., Wang R., Chen L., et al. Gene function prediction using labeled and unlabeled data. BMC Bioinformatics.2008; 9(1):297–315. https://doi.org/10.1186/1471-2105-9-57
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 297-315
-
-
Zhao, X.1
Wang, R.2
Chen, L.3
-
2
-
-
0035860499
-
Global analysis of protein activities using proteome chips
-
PMID: 11474067
-
Zhu H., Bilgin M., Bangham R., Hall D., et al. Global analysis of protein activities using proteome chips. Science.2001; 293:2101–2105. https://doi.org/10.1126/science.1062191 PMID: 11474067
-
(2001)
Science
, vol.293
, pp. 2101-2105
-
-
Zhu, H.1
Bilgin, M.2
Bangham, R.3
Hall, D.4
-
3
-
-
0037050004
-
Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
-
PMID: 11805837
-
Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature.2002; 415:180–183. https://doi.org/10.1038/415180a PMID: 11805837
-
(2002)
Nature
, vol.415
, pp. 180-183
-
-
Ho, Y.1
Gruhler, A.2
Heilbut, A.3
Bader, G.D.4
Moore, L.5
Adams, S.L.6
-
4
-
-
0037050026
-
Functional organization of the yeast proteome by systematic analysis of protein complexes
-
PMID: 11805826
-
Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature.2002; 415:141–147. https://doi.org/10.1038/415141a PMID: 11805826
-
(2002)
Nature
, vol.415
, pp. 141-147
-
-
Gavin, A.C.1
Bosche, M.2
Krause, R.3
Grandi, P.4
Marzioch, M.5
Bauer, A.6
-
5
-
-
77958498250
-
Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
-
PMID: 20817744
-
You ZH, Lei YK, Gui J, Huang DS, Zhou XB. Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics.2010; 26(21):2744–2751. https://doi.org/10.1093/bioinformatics/btq510 PMID: 20817744
-
(2010)
Bioinformatics
, vol.26
, Issue.21
, pp. 2744-2751
-
-
You, Z.H.1
Lei, Y.K.2
Gui, J.3
Huang, D.S.4
Zhou, X.B.5
-
6
-
-
84944768918
-
Mining topological structures of PPI networks for human brain specific genes
-
Oct 16; PMID: 26505393
-
Cui W. J., Gong X. J., Yu H., Zhang X. Mining topological structures of PPI networks for human brain specific genes. Genetics and Molecular Research.2015 Oct 16; 14(4):12437–45. https://doi.org/10.4238/2015.October.16.10 PMID: 26505393
-
(2015)
Genetics and Molecular Research
, vol.14
, Issue.4
, pp. 12437-12445
-
-
Cui, W.J.1
Gong, X.J.2
Yu, H.3
Zhang, X.4
-
7
-
-
38949138554
-
Computational prediction of protein–protein interactions
-
PMID: 18095187
-
Skrabanek L, Saini H K, Bader G D, et al. Computational prediction of protein–protein interactions. Molecular Biotechnology.2008; 38(1):1–17. https://doi.org/10.1007/s12033-007-0069-2 PMID: 18095187
-
(2008)
Molecular Biotechnology
, vol.38
, Issue.1
, pp. 1-17
-
-
Skrabanek, L.1
Saini, H.K.2
Bader, G.D.3
-
8
-
-
34248371273
-
Predicting protein-protein interactions based only on sequences information
-
Shen J, Zhang J, Luo X, et al. Predicting protein-protein interactions based only on sequences information. Proceedings of the National Academy of Sciences.2007; 104(11):4337–4341. https://doi.org/10.1073/pnas.0607879104
-
(2007)
Proceedings of The National Academy of Sciences
, vol.104
, Issue.11
, pp. 4337-4341
-
-
Shen, J.1
Zhang, J.2
Luo, X.3
-
9
-
-
44349159560
-
Using support vector machine combined with auto covariance to predict protein protein interactions from protein sequences
-
PMID: 18390576
-
Guo Y., Yu L., Wen Z., Li M. Using support vector machine combined with auto covariance to predict protein protein interactions from protein sequences. Nucleic Acids Research.2008; 36(9):3025–3030. https://doi.org/10.1093/nar/gkn159 PMID: 18390576
-
(2008)
Nucleic Acids Research
, vol.36
, Issue.9
, pp. 3025-3030
-
-
Guo, Y.1
Yu, L.2
Wen, Z.3
Li, M.4
-
10
-
-
79960395689
-
Prediction of protein-protein interactions using local description of amino acid sequence
-
Zhou Y.Z., Gao Y., Zheng Y.Y. Prediction of protein-protein interactions using local description of amino acid sequence. Advances in Computer Science and Education Applications.2011;254–262. https://doi.org/10.1007/978-3-642-22456-0_37
-
(2011)
Advances in Computer Science and Education Applications
, vol.254-262
-
-
Zhou, Y.Z.1
Gao, Y.2
Zheng, Y.Y.3
-
11
-
-
78449307593
-
Prediction of protein-protein interactions from protein sequence using local descriptors
-
PMID: 20509850
-
Yang L., Xia J.F., Gui J. Prediction of protein-protein interactions from protein sequence using local descriptors. Protein and Peptide Letters.2010; 17(9):1085–1090. https://doi.org/10.2174/ 092986610791760306 PMID: 20509850
-
(2010)
Protein and Peptide Letters
, vol.17
, Issue.9
, pp. 1085-1090
-
-
Yang, L.1
Xia, J.F.2
Gui, J.3
-
12
-
-
84944797292
-
Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set
-
You ZH, Zhu L, Zheng CH, Yu HJ, Deng SP. Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. Bmc Bioinforma.2014; 15(15):S9. https://doi.org/10.1186/1471-2105-15-S15-S9
-
(2014)
Bmc Bioinforma
, vol.15
, Issue.15
, pp. S9
-
-
You, Z.H.1
Zhu, L.2
Zheng, C.H.3
Yu, H.J.4
Deng, S.P.5
-
13
-
-
84929094094
-
Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest
-
Y. Z.H., Chan K., Hu P. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. Plos One.2015; 10(5): 0125811.
-
(2015)
Plos One
, vol.10
, Issue.5
-
-
Y, Z.H.1
Chan, K.2
Hu, P.3
-
14
-
-
84927712367
-
RepDNA: A Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical, properties and sequence-order effects
-
PMID: 25504848
-
Liu B, Liu F, Fang L, et al. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical, properties and sequence-order effects. Bioinformatics.2015; 31(8):1307. https://doi.org/10.1093/bioinformatics/btu820 PMID: 25504848
-
(2015)
Bioinformatics
, vol.31
, Issue.8
, pp. 1307
-
-
Liu, B.1
Liu, F.2
Fang, L.3
-
15
-
-
84956620000
-
RepRNA: A web server for generating various feature vectors of RNA sequences
-
Liu B, Liu F, Fang L, et al. repRNA: a web server for generating various feature vectors of RNA sequences. Molecular Genetics and Genomics.2016; 291(1):1–9. https://doi.org/10.1007/s00438-015-1078-7
-
(2016)
Molecular Genetics and Genomics
, vol.291
, Issue.1
, pp. 1-9
-
-
Liu, B.1
Liu, F.2
Fang, L.3
-
16
-
-
84979865452
-
Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
-
Liu B, Liu F, Wang X, et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences Nucleic Acids Research.2015; 43(W1):65–71. https://doi.org/10.1093/nar/gkv458
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.W1
, pp. 65-71
-
-
Liu, B.1
Liu, F.2
Wang, X.3
-
17
-
-
85017075333
-
Identification of Protein–Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information
-
Ding Y, Tang J, Guo F. Identification of Protein–Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information. International Journal of Molecular Sciences.2016; 17(10):1623. https://doi.org/10.3390/ijms17101623
-
(2016)
International Journal of Molecular Sciences
, vol.17
, Issue.10
, pp. 1623
-
-
Ding, Y.1
Tang, J.2
Guo, F.3
-
18
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics.2001; 29(5):1189–1232.
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
19
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman B J, Hastie T., and Tibshirami R. Additive logistic regression: A statistical view of boosting. Annals of Statistics.2000; 28:337–407.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, B.J.1
Hastie, T.2
Tibshirami, R.3
-
21
-
-
13444262436
-
Predicting protein–protein interactions using signature products
-
PMID: 15319262
-
Martin S, Roe D, Faulon JL. Predicting protein–protein interactions using signature products. Bioinformatics.2005; 21(2):218–226. https://doi.org/10.1093/bioinformatics/bth483 PMID: 15319262
-
(2005)
Bioinformatics
, vol.21
, Issue.2
, pp. 218-226
-
-
Martin, S.1
Roe, D.2
Faulon, J.L.3
-
22
-
-
84947475155
-
Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence
-
Huang YA, You ZH, Gao X, Wong L, Wang L. Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence. BioMed Research International.2015; 2015:1–10.
-
(2015)
Biomed Research International
, vol.2015
, pp. 1-10
-
-
Huang, Y.A.1
You, Z.H.2
Gao, X.3
Wong, L.4
Wang, L.5
-
23
-
-
85048222521
-
A comprehensive review and comparison of different computational methods for protein remote homology detection
-
Chen J, Guo M, Wang X, et al. A comprehensive review and comparison of different computational methods for protein remote homology detection. Briefings in Bioinformatics.2016;1–14.
-
(2016)
Briefings in Bioinformatics
, vol.1-14
-
-
Chen, J.1
Guo, M.2
Wang, X.3
-
24
-
-
84988876883
-
Predicting protein-protein interactions via multivariate mutual information of protein sequences
-
PMID: 27677692
-
Ding Y, Tang J, Fei G. Predicting protein-protein interactions via multivariate mutual information of protein sequences. Bmc Bioinformatics.2016; 17(1):398. https://doi.org/10.1186/s12859-016-1253-9 PMID: 27677692
-
(2016)
Bmc Bioinformatics
, vol.17
, Issue.1
, pp. 398
-
-
Ding, Y.1
Tang, J.2
Fei, G.3
-
25
-
-
84983605925
-
Detection of Protein-Protein Interactions from Amino Acid Sequences Using a Rotation Forest Model with a Novel PR-LPQ Descriptor
-
Wong L, You ZH, Li S, Huang YA, Liu G. Detection of Protein-Protein Interactions from Amino Acid Sequences Using a Rotation Forest Model with a Novel PR-LPQ Descriptor. Lect Notes Comput Sci.2015; 9227:713–720. https://doi.org/10.1007/978-3-319-22053-6_75
-
(2015)
Lect Notes Comput Sci
, vol.9227
, pp. 713-720
-
-
Wong, L.1
You, Z.H.2
Li, S.3
Huang, Y.A.4
Liu, G.5
-
26
-
-
25144498379
-
A human protein-protein interaction network: A resource for annotating the proteome
-
PMID: 16169070
-
Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell.2005; 122(6):957–968. https://doi.org/10.1016/j.cell.2005.08.029 PMID: 16169070
-
(2005)
Cell
, vol.122
, Issue.6
, pp. 957-968
-
-
Stelzl, U.1
Worm, U.2
Lalowski, M.3
-
27
-
-
84870391329
-
Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions
-
PMID: 23000219
-
Ding C, Yuan L F, Guo S H, et al. Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions Journal of Proteomics.2012; 77(24):321–328. https://doi.org/10.1016/j.jprot.2012.09.006 PMID: 23000219
-
(2012)
Journal of Proteomics
, vol.77
, Issue.24
, pp. 321-328
-
-
Ding, C.1
Yuan, L.F.2
Guo, S.H.3
-
28
-
-
84984688335
-
Identification of Secretory Proteins in Mycobacterium tuberculosisUs-ing Pseudo Amino Acid Composition
-
PMID: 27597968
-
Yang H, Tang H, Chen X X, et al. Identification of Secretory Proteins in Mycobacterium tuberculosisUs-ing Pseudo Amino Acid Composition. Biomed Research International.2016; 2016:5413903. https://doi.org/10.1155/2016/5413903 PMID: 27597968
-
(2016)
Biomed Research International
, vol.2016
, pp. 5413903
-
-
Yang, H.1
Tang, H.2
Chen, X.X.3
-
29
-
-
85027038079
-
Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition
-
Chen Xin-Xin,Tang Hua,Li Wen-Chao, Wu Hao,Chen Wei,Ding Hui, and Lin Hao. Identification of Bacterial Cell Wall Lyases via Pseudo Amino Acid Composition. BioMed Research International.2016;8
-
(2016)
Biomed Research International
, vol.8
-
-
Xin-Xin, C.1
Hua, T.2
Wen-Chao, L.3
Hao, W.4
Wei, C.5
Hui, D.6
Hao, L.7
-
30
-
-
84989819994
-
Prediction of phosphothreonine sites in human proteins by fusing different features
-
PMID: 27698459
-
Zhao Y W, Lai H Y, Tang H, et al. Prediction of phosphothreonine sites in human proteins by fusing different features Scientific Reports.2016; 6:34817. https://doi.org/10.1038/srep34817 PMID: 27698459
-
(2016)
Scientific Reports
, vol.6
, pp. 34817
-
-
Zhao, Y.W.1
Lai, H.Y.2
Tang, H.3
-
31
-
-
84994316617
-
IOri-Human: Identify human origin of replication by incorporating dinu-cleotide physicochemical properties into pseudo nucleotide composition
-
Zhang C J, Tang H, Li W C, et al. iOri-Human: identify human origin of replication by incorporating dinu-cleotide physicochemical properties into pseudo nucleotide composition. Oncotarget.2014; 7(43): 69783.
-
(2014)
Oncotarget
, vol.7
, Issue.43
, pp. 69783
-
-
Zhang, C.J.1
Tang, H.2
Li, W.C.3
-
32
-
-
84962263478
-
IEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
-
PMID: 26476782
-
Liu B, Fang L, Ren L, et al. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics.2016; 32(3):362. https://doi.org/10.1093/bioinformatics/btv604 PMID: 26476782
-
(2016)
Bioinformatics
, vol.32
, Issue.3
, pp. 362
-
-
Liu, B.1
Fang, L.2
Ren, L.3
-
34
-
-
84983353017
-
IDHS-EL: Identifying DNase I hypersensitive-sites by fusing three different modes of pseu-do nucleotide composition into an ensemble learning framework
-
Liu B, Long R, Chou K C. iDHS-EL: Identifying DNase I hypersensitive-sites by fusing three different modes of pseu-do nucleotide composition into an ensemble learning framework. Bioinformatics.2016; 32(16). https://doi.org/10.1093/bioinformatics/btw186
-
(2016)
Bioinformatics
, vol.32
, Issue.16
-
-
Liu, B.1
Long, R.2
Chou, K.C.3
-
35
-
-
85021669018
-
Pro54DB: A database for experimentally verified sigma-54 promoters
-
PMID: 28171531
-
Liang Z Y, Lai H Y, Yang H, et al. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics.2017. PMID: 28171531
-
(2017)
Bioinformatics
-
-
Liang, Z.Y.1
Lai, H.Y.2
Yang, H.3
-
36
-
-
85013243690
-
Pse-Analysis: A python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods
-
PMID: 28076851
-
Liu B, Wu H, Zhang D, et al. Pse-Analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods Oncotarget.2017;(8)13338–13343 https://doi.org/10.18632/oncotarget.14524 PMID: 28076851
-
(2017)
Oncotarget
, vol.8
, pp. 13338-13343
-
-
Liu, B.1
Wu, H.2
Zhang, D.3
|