메뉴 건너뛰기




Volumn 12, Issue 8, 2017, Pages

Multi-scale encoding of amino acid sequences for predicting protein interactions using gradient boosting decision tree

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; BACTERIAL PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN; WNT PROTEIN;

EID: 85027018673     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0181426     Document Type: Article
Times cited : (49)

References (36)
  • 1
    • 41349091869 scopus 로고    scopus 로고
    • Gene function prediction using labeled and unlabeled data
    • Zhao X., Wang R., Chen L., et al. Gene function prediction using labeled and unlabeled data. BMC Bioinformatics.2008; 9(1):297–315. https://doi.org/10.1186/1471-2105-9-57
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 297-315
    • Zhao, X.1    Wang, R.2    Chen, L.3
  • 2
    • 0035860499 scopus 로고    scopus 로고
    • Global analysis of protein activities using proteome chips
    • PMID: 11474067
    • Zhu H., Bilgin M., Bangham R., Hall D., et al. Global analysis of protein activities using proteome chips. Science.2001; 293:2101–2105. https://doi.org/10.1126/science.1062191 PMID: 11474067
    • (2001) Science , vol.293 , pp. 2101-2105
    • Zhu, H.1    Bilgin, M.2    Bangham, R.3    Hall, D.4
  • 3
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • PMID: 11805837
    • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature.2002; 415:180–183. https://doi.org/10.1038/415180a PMID: 11805837
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1    Gruhler, A.2    Heilbut, A.3    Bader, G.D.4    Moore, L.5    Adams, S.L.6
  • 4
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • PMID: 11805826
    • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature.2002; 415:141–147. https://doi.org/10.1038/415141a PMID: 11805826
    • (2002) Nature , vol.415 , pp. 141-147
    • Gavin, A.C.1    Bosche, M.2    Krause, R.3    Grandi, P.4    Marzioch, M.5    Bauer, A.6
  • 5
    • 77958498250 scopus 로고    scopus 로고
    • Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
    • PMID: 20817744
    • You ZH, Lei YK, Gui J, Huang DS, Zhou XB. Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics.2010; 26(21):2744–2751. https://doi.org/10.1093/bioinformatics/btq510 PMID: 20817744
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2744-2751
    • You, Z.H.1    Lei, Y.K.2    Gui, J.3    Huang, D.S.4    Zhou, X.B.5
  • 6
    • 84944768918 scopus 로고    scopus 로고
    • Mining topological structures of PPI networks for human brain specific genes
    • Oct 16; PMID: 26505393
    • Cui W. J., Gong X. J., Yu H., Zhang X. Mining topological structures of PPI networks for human brain specific genes. Genetics and Molecular Research.2015 Oct 16; 14(4):12437–45. https://doi.org/10.4238/2015.October.16.10 PMID: 26505393
    • (2015) Genetics and Molecular Research , vol.14 , Issue.4 , pp. 12437-12445
    • Cui, W.J.1    Gong, X.J.2    Yu, H.3    Zhang, X.4
  • 7
    • 38949138554 scopus 로고    scopus 로고
    • Computational prediction of protein–protein interactions
    • PMID: 18095187
    • Skrabanek L, Saini H K, Bader G D, et al. Computational prediction of protein–protein interactions. Molecular Biotechnology.2008; 38(1):1–17. https://doi.org/10.1007/s12033-007-0069-2 PMID: 18095187
    • (2008) Molecular Biotechnology , vol.38 , Issue.1 , pp. 1-17
    • Skrabanek, L.1    Saini, H.K.2    Bader, G.D.3
  • 8
    • 34248371273 scopus 로고    scopus 로고
    • Predicting protein-protein interactions based only on sequences information
    • Shen J, Zhang J, Luo X, et al. Predicting protein-protein interactions based only on sequences information. Proceedings of the National Academy of Sciences.2007; 104(11):4337–4341. https://doi.org/10.1073/pnas.0607879104
    • (2007) Proceedings of The National Academy of Sciences , vol.104 , Issue.11 , pp. 4337-4341
    • Shen, J.1    Zhang, J.2    Luo, X.3
  • 9
    • 44349159560 scopus 로고    scopus 로고
    • Using support vector machine combined with auto covariance to predict protein protein interactions from protein sequences
    • PMID: 18390576
    • Guo Y., Yu L., Wen Z., Li M. Using support vector machine combined with auto covariance to predict protein protein interactions from protein sequences. Nucleic Acids Research.2008; 36(9):3025–3030. https://doi.org/10.1093/nar/gkn159 PMID: 18390576
    • (2008) Nucleic Acids Research , vol.36 , Issue.9 , pp. 3025-3030
    • Guo, Y.1    Yu, L.2    Wen, Z.3    Li, M.4
  • 10
    • 79960395689 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using local description of amino acid sequence
    • Zhou Y.Z., Gao Y., Zheng Y.Y. Prediction of protein-protein interactions using local description of amino acid sequence. Advances in Computer Science and Education Applications.2011;254–262. https://doi.org/10.1007/978-3-642-22456-0_37
    • (2011) Advances in Computer Science and Education Applications , vol.254-262
    • Zhou, Y.Z.1    Gao, Y.2    Zheng, Y.Y.3
  • 11
    • 78449307593 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions from protein sequence using local descriptors
    • PMID: 20509850
    • Yang L., Xia J.F., Gui J. Prediction of protein-protein interactions from protein sequence using local descriptors. Protein and Peptide Letters.2010; 17(9):1085–1090. https://doi.org/10.2174/ 092986610791760306 PMID: 20509850
    • (2010) Protein and Peptide Letters , vol.17 , Issue.9 , pp. 1085-1090
    • Yang, L.1    Xia, J.F.2    Gui, J.3
  • 12
    • 84944797292 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set
    • You ZH, Zhu L, Zheng CH, Yu HJ, Deng SP. Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. Bmc Bioinforma.2014; 15(15):S9. https://doi.org/10.1186/1471-2105-15-S15-S9
    • (2014) Bmc Bioinforma , vol.15 , Issue.15 , pp. S9
    • You, Z.H.1    Zhu, L.2    Zheng, C.H.3    Yu, H.J.4    Deng, S.P.5
  • 13
    • 84929094094 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest
    • Y. Z.H., Chan K., Hu P. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. Plos One.2015; 10(5): 0125811.
    • (2015) Plos One , vol.10 , Issue.5
    • Y, Z.H.1    Chan, K.2    Hu, P.3
  • 14
    • 84927712367 scopus 로고    scopus 로고
    • RepDNA: A Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical, properties and sequence-order effects
    • PMID: 25504848
    • Liu B, Liu F, Fang L, et al. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical, properties and sequence-order effects. Bioinformatics.2015; 31(8):1307. https://doi.org/10.1093/bioinformatics/btu820 PMID: 25504848
    • (2015) Bioinformatics , vol.31 , Issue.8 , pp. 1307
    • Liu, B.1    Liu, F.2    Fang, L.3
  • 15
    • 84956620000 scopus 로고    scopus 로고
    • RepRNA: A web server for generating various feature vectors of RNA sequences
    • Liu B, Liu F, Fang L, et al. repRNA: a web server for generating various feature vectors of RNA sequences. Molecular Genetics and Genomics.2016; 291(1):1–9. https://doi.org/10.1007/s00438-015-1078-7
    • (2016) Molecular Genetics and Genomics , vol.291 , Issue.1 , pp. 1-9
    • Liu, B.1    Liu, F.2    Fang, L.3
  • 16
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: A web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • Liu B, Liu F, Wang X, et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences Nucleic Acids Research.2015; 43(W1):65–71. https://doi.org/10.1093/nar/gkv458
    • (2015) Nucleic Acids Research , vol.43 , Issue.W1 , pp. 65-71
    • Liu, B.1    Liu, F.2    Wang, X.3
  • 17
    • 85017075333 scopus 로고    scopus 로고
    • Identification of Protein–Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information
    • Ding Y, Tang J, Guo F. Identification of Protein–Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information. International Journal of Molecular Sciences.2016; 17(10):1623. https://doi.org/10.3390/ijms17101623
    • (2016) International Journal of Molecular Sciences , vol.17 , Issue.10 , pp. 1623
    • Ding, Y.1    Tang, J.2    Guo, F.3
  • 18
    • 0035470889 scopus 로고    scopus 로고
    • Greedy Function Approximation: A Gradient Boosting Machine
    • Friedman J H. Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics.2001; 29(5):1189–1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 19
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman B J, Hastie T., and Tibshirami R. Additive logistic regression: A statistical view of boosting. Annals of Statistics.2000; 28:337–407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, B.J.1    Hastie, T.2    Tibshirami, R.3
  • 21
    • 13444262436 scopus 로고    scopus 로고
    • Predicting protein–protein interactions using signature products
    • PMID: 15319262
    • Martin S, Roe D, Faulon JL. Predicting protein–protein interactions using signature products. Bioinformatics.2005; 21(2):218–226. https://doi.org/10.1093/bioinformatics/bth483 PMID: 15319262
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 218-226
    • Martin, S.1    Roe, D.2    Faulon, J.L.3
  • 22
    • 84947475155 scopus 로고    scopus 로고
    • Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence
    • Huang YA, You ZH, Gao X, Wong L, Wang L. Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence. BioMed Research International.2015; 2015:1–10.
    • (2015) Biomed Research International , vol.2015 , pp. 1-10
    • Huang, Y.A.1    You, Z.H.2    Gao, X.3    Wong, L.4    Wang, L.5
  • 23
    • 85048222521 scopus 로고    scopus 로고
    • A comprehensive review and comparison of different computational methods for protein remote homology detection
    • Chen J, Guo M, Wang X, et al. A comprehensive review and comparison of different computational methods for protein remote homology detection. Briefings in Bioinformatics.2016;1–14.
    • (2016) Briefings in Bioinformatics , vol.1-14
    • Chen, J.1    Guo, M.2    Wang, X.3
  • 24
    • 84988876883 scopus 로고    scopus 로고
    • Predicting protein-protein interactions via multivariate mutual information of protein sequences
    • PMID: 27677692
    • Ding Y, Tang J, Fei G. Predicting protein-protein interactions via multivariate mutual information of protein sequences. Bmc Bioinformatics.2016; 17(1):398. https://doi.org/10.1186/s12859-016-1253-9 PMID: 27677692
    • (2016) Bmc Bioinformatics , vol.17 , Issue.1 , pp. 398
    • Ding, Y.1    Tang, J.2    Fei, G.3
  • 25
    • 84983605925 scopus 로고    scopus 로고
    • Detection of Protein-Protein Interactions from Amino Acid Sequences Using a Rotation Forest Model with a Novel PR-LPQ Descriptor
    • Wong L, You ZH, Li S, Huang YA, Liu G. Detection of Protein-Protein Interactions from Amino Acid Sequences Using a Rotation Forest Model with a Novel PR-LPQ Descriptor. Lect Notes Comput Sci.2015; 9227:713–720. https://doi.org/10.1007/978-3-319-22053-6_75
    • (2015) Lect Notes Comput Sci , vol.9227 , pp. 713-720
    • Wong, L.1    You, Z.H.2    Li, S.3    Huang, Y.A.4    Liu, G.5
  • 26
    • 25144498379 scopus 로고    scopus 로고
    • A human protein-protein interaction network: A resource for annotating the proteome
    • PMID: 16169070
    • Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell.2005; 122(6):957–968. https://doi.org/10.1016/j.cell.2005.08.029 PMID: 16169070
    • (2005) Cell , vol.122 , Issue.6 , pp. 957-968
    • Stelzl, U.1    Worm, U.2    Lalowski, M.3
  • 27
    • 84870391329 scopus 로고    scopus 로고
    • Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions
    • PMID: 23000219
    • Ding C, Yuan L F, Guo S H, et al. Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions Journal of Proteomics.2012; 77(24):321–328. https://doi.org/10.1016/j.jprot.2012.09.006 PMID: 23000219
    • (2012) Journal of Proteomics , vol.77 , Issue.24 , pp. 321-328
    • Ding, C.1    Yuan, L.F.2    Guo, S.H.3
  • 28
    • 84984688335 scopus 로고    scopus 로고
    • Identification of Secretory Proteins in Mycobacterium tuberculosisUs-ing Pseudo Amino Acid Composition
    • PMID: 27597968
    • Yang H, Tang H, Chen X X, et al. Identification of Secretory Proteins in Mycobacterium tuberculosisUs-ing Pseudo Amino Acid Composition. Biomed Research International.2016; 2016:5413903. https://doi.org/10.1155/2016/5413903 PMID: 27597968
    • (2016) Biomed Research International , vol.2016 , pp. 5413903
    • Yang, H.1    Tang, H.2    Chen, X.X.3
  • 30
    • 84989819994 scopus 로고    scopus 로고
    • Prediction of phosphothreonine sites in human proteins by fusing different features
    • PMID: 27698459
    • Zhao Y W, Lai H Y, Tang H, et al. Prediction of phosphothreonine sites in human proteins by fusing different features Scientific Reports.2016; 6:34817. https://doi.org/10.1038/srep34817 PMID: 27698459
    • (2016) Scientific Reports , vol.6 , pp. 34817
    • Zhao, Y.W.1    Lai, H.Y.2    Tang, H.3
  • 31
    • 84994316617 scopus 로고    scopus 로고
    • IOri-Human: Identify human origin of replication by incorporating dinu-cleotide physicochemical properties into pseudo nucleotide composition
    • Zhang C J, Tang H, Li W C, et al. iOri-Human: identify human origin of replication by incorporating dinu-cleotide physicochemical properties into pseudo nucleotide composition. Oncotarget.2014; 7(43): 69783.
    • (2014) Oncotarget , vol.7 , Issue.43 , pp. 69783
    • Zhang, C.J.1    Tang, H.2    Li, W.C.3
  • 32
    • 84962263478 scopus 로고    scopus 로고
    • IEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
    • PMID: 26476782
    • Liu B, Fang L, Ren L, et al. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics.2016; 32(3):362. https://doi.org/10.1093/bioinformatics/btv604 PMID: 26476782
    • (2016) Bioinformatics , vol.32 , Issue.3 , pp. 362
    • Liu, B.1    Fang, L.2    Ren, L.3
  • 34
    • 84983353017 scopus 로고    scopus 로고
    • IDHS-EL: Identifying DNase I hypersensitive-sites by fusing three different modes of pseu-do nucleotide composition into an ensemble learning framework
    • Liu B, Long R, Chou K C. iDHS-EL: Identifying DNase I hypersensitive-sites by fusing three different modes of pseu-do nucleotide composition into an ensemble learning framework. Bioinformatics.2016; 32(16). https://doi.org/10.1093/bioinformatics/btw186
    • (2016) Bioinformatics , vol.32 , Issue.16
    • Liu, B.1    Long, R.2    Chou, K.C.3
  • 35
    • 85021669018 scopus 로고    scopus 로고
    • Pro54DB: A database for experimentally verified sigma-54 promoters
    • PMID: 28171531
    • Liang Z Y, Lai H Y, Yang H, et al. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics.2017. PMID: 28171531
    • (2017) Bioinformatics
    • Liang, Z.Y.1    Lai, H.Y.2    Yang, H.3
  • 36
    • 85013243690 scopus 로고    scopus 로고
    • Pse-Analysis: A python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods
    • PMID: 28076851
    • Liu B, Wu H, Zhang D, et al. Pse-Analysis: a python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods Oncotarget.2017;(8)13338–13343 https://doi.org/10.18632/oncotarget.14524 PMID: 28076851
    • (2017) Oncotarget , vol.8 , pp. 13338-13343
    • Liu, B.1    Wu, H.2    Zhang, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.