메뉴 건너뛰기




Volumn , Issue , 2018, Pages 5876-5883

Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DEEP NEURAL NETWORKS; NATURAL LANGUAGE PROCESSING SYSTEMS; SENTIMENT ANALYSIS;

EID: 85039779288     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (600)

References (37)
  • 3
    • 84959482068 scopus 로고    scopus 로고
    • AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis
    • Cambria, E.; Fu, J.; Bisio, F.; and Poria, S. 2015. AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis. In AAAI, 508-514.
    • (2015) AAAI , pp. 508-514
    • Cambria, E.1    Fu, J.2    Bisio, F.3    Poria, S.4
  • 4
    • 85046586891 scopus 로고    scopus 로고
    • SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives
    • Cambria, E.; Poria, S.; Bajpai, R.; and Schuller, B. 2016. SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. In COLING, 2666-2677.
    • (2016) COLING , pp. 2666-2677
    • Cambria, E.1    Poria, S.2    Bajpai, R.3    Schuller, B.4
  • 8
    • 85073152063 scopus 로고    scopus 로고
    • Recurrent attention network on memory for aspect sentiment analysis
    • Chen, P.; Sun, Z.; Bing, L.; and Yang, W. 2017. Recurrent attention network on memory for aspect sentiment analysis. In EMNLP 2017, 463-472.
    • (2017) EMNLP 2017 , pp. 463-472
    • Chen, P.1    Sun, Z.2    Bing, L.3    Yang, W.4
  • 9
    • 84906925853 scopus 로고    scopus 로고
    • Adaptive recursive neural network for target-dependent twitter sentiment classification
    • Dong, L.; Wei, F.; Tan, C.; Tang, D.; Zhou, M.; and Xu, K. 2014. Adaptive recursive neural network for target-dependent twitter sentiment classification. In the 52nd ACL, 49-54.
    • (2014) The 52nd ACL , pp. 49-54
    • Dong, L.1    Wei, F.2    Tan, C.3    Tang, D.4    Zhou, M.5    Xu, K.6
  • 10
    • 84995779362 scopus 로고    scopus 로고
    • Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering
    • He, R., and McAuley, J. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In the 25th WWW, 507-517.
    • (2016) The 25th WWW , pp. 507-517
    • He, R.1    McAuley, J.2
  • 12
    • 85066922137 scopus 로고    scopus 로고
    • Nrc-Canada-2014: Detecting aspects and sentiment in customer reviews
    • Kiritchenko, S.; Zhu, X.; Cherry, C.; and Mohammad, S. 2014. Nrc-canada-2014: Detecting aspects and sentiment in customer reviews. In SemEval 2014, 437-442.
    • (2014) SemEval 2014 , pp. 437-442
    • Kiritchenko, S.1    Zhu, X.2    Cherry, C.3    Mohammad, S.4
  • 14
    • 84982307217 scopus 로고    scopus 로고
    • Multilingual sentiment analysis: From formal to informal and scarce resource languages
    • Lo, S. L.; Cambria, E.; Chiong, R.; and Cornforth, D. 2017. Multilingual sentiment analysis: From formal to informal and scarce resource languages. Artificial Intelligence Review 48(4):499-527.
    • (2017) Artificial Intelligence Review , vol.48 , Issue.4 , pp. 499-527
    • Lo, S.L.1    Cambria, E.2    Chiong, R.3    Cornforth, D.4
  • 15
    • 85054979013 scopus 로고    scopus 로고
    • Label embedding for zero-shot fine-grained named entity typing
    • Ma, Y.; Cambria, E.; and Gao, S. 2016. Label embedding for zero-shot fine-grained named entity typing. In COLING, 171-180.
    • (2016) COLING , pp. 171-180
    • Ma, Y.1    Cambria, E.2    Gao, S.3
  • 16
    • 85017176110 scopus 로고    scopus 로고
    • Deep learning-based document modeling for personality detection from text
    • Majumder, N.; Poria, S.; Gelbukh, A.; and Cambria, E. 2017. Deep learning-based document modeling for personality detection from text. IEEE Intelligent Systems 32(2):74-79.
    • (2017) IEEE Intelligent Systems , vol.32 , Issue.2 , pp. 74-79
    • Majumder, N.1    Poria, S.2    Gelbukh, A.3    Cambria, E.4
  • 17
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J. 2013. Distributed representations of words and phrases and their compositionality. In NIPS 2013, 3111-3119.
    • (2013) NIPS 2013 , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 18
    • 84943812938 scopus 로고    scopus 로고
    • A knowledge-intensive model for prepositional phrase attachment
    • Nakashole, N., and Mitchell, T. M. 2015. A knowledge-intensive model for prepositional phrase attachment. In ACL (1), 365-375.
    • (2015) ACL , Issue.1 , pp. 365-375
    • Nakashole, N.1    Mitchell, T.M.2
  • 19
    • 84959934060 scopus 로고    scopus 로고
    • Phrasernn: Phrase recursive neural network for aspect-based sentiment analysis
    • Nguyen, T. H., and Shirai, K. 2015. Phrasernn: Phrase recursive neural network for aspect-based sentiment analysis. In EMNLP 2015, 2509-2514.
    • (2015) EMNLP 2015 , pp. 2509-2514
    • Nguyen, T.H.1    Shirai, K.2
  • 23
    • 85046580416 scopus 로고    scopus 로고
    • A deeper look into sarcastic tweets using deep convolutional neural networks
    • Poria, S.; Cambria, E.; Hazarika, D.; and Vij, P. 2016. A deeper look into sarcastic tweets using deep convolutional neural networks. In COLING, 1601-1612.
    • (2016) COLING , pp. 1601-1612
    • Poria, S.1    Cambria, E.2    Hazarika, D.3    Vij, P.4
  • 24
    • 85011844403 scopus 로고    scopus 로고
    • A review of affective computing: From unimodal analysis to multimodal fusion
    • Poria, S.; Cambria, E.; Bajpai, R.; and Hussain, A. 2017. A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion 37:98-125.
    • (2017) Information Fusion , vol.37 , pp. 98-125
    • Poria, S.1    Cambria, E.2    Bajpai, R.3    Hussain, A.4
  • 25
    • 84981713239 scopus 로고    scopus 로고
    • Aspect extraction for opinion mining with a deep convolutional neural network
    • Poria, S.; Cambria, E.; and Gelbukh, A. 2016. Aspect extraction for opinion mining with a deep convolutional neural network. Knowledge-Based Systems 108:42-49.
    • (2016) Knowledge-Based Systems , vol.108 , pp. 42-49
    • Poria, S.1    Cambria, E.2    Gelbukh, A.3
  • 26
    • 84859091297 scopus 로고    scopus 로고
    • Coreference resolution with world knowledge
    • Rahman, A., and Ng, V. 2011. Coreference resolution with world knowledge. In the 49th ACL, 814-824.
    • (2011) The 49th ACL , pp. 814-824
    • Rahman, A.1    Ng, V.2
  • 27
    • 84862300668 scopus 로고    scopus 로고
    • Design challenges and misconceptions in named entity recognition
    • Ratinov, L., and Roth, D. 2009. Design challenges and misconceptions in named entity recognition. In the 13th CoNLL, 147-155.
    • (2009) The 13th CoNLL , pp. 147-155
    • Ratinov, L.1    Roth, D.2
  • 28
    • 85054986173 scopus 로고    scopus 로고
    • Sentihood: Targeted aspect based sentiment analysis dataset for urban neighbourhoods
    • Saeidi, M.; Bouchard, G.; Liakata, M.; and Riedel, S. 2016. Sentihood: Targeted aspect based sentiment analysis dataset for urban neighbourhoods. In COLING 2016, 1546-1556.
    • (2016) COLING 2016 , pp. 1546-1556
    • Saeidi, M.1    Bouchard, G.2    Liakata, M.3    Riedel, S.4
  • 30
    • 85055002395 scopus 로고    scopus 로고
    • Effective lstms for target-dependent sentiment classification
    • Tang, D.; Qin, B.; Feng, X.; and Liu, T. 2016. Effective lstms for target-dependent sentiment classification. In COLING 2016, 3298-3307.
    • (2016) COLING 2016 , pp. 3298-3307
    • Tang, D.1    Qin, B.2    Feng, X.3    Liu, T.4
  • 31
    • 85072835413 scopus 로고    scopus 로고
    • Aspect level sentiment classification with deep memory network
    • Tang, D.; Qin, B.; and Liu, T. 2016. Aspect level sentiment classification with deep memory network. In the EMNLP 2016, 214-224.
    • (2016) The EMNLP 2016 , pp. 214-224
    • Tang, D.1    Qin, B.2    Liu, T.3
  • 33
    • 85072824815 scopus 로고    scopus 로고
    • Attention-based lstm for aspect-level sentiment classification
    • Wang, Y.; Huang, M.; zhu, x.; and Zhao, L. 2016. Attention-based lstm for aspect-level sentiment classification. In the EMNLP 2016, 606-615.
    • (2016) The EMNLP 2016 , pp. 606-615
    • Wang, Y.1    Huang, M.2    Zhu, X.3    Zhao, L.4
  • 34
    • 85021678260 scopus 로고    scopus 로고
    • Tdparse: Multi-target-specific sentiment recognition on twitter
    • Wang, B.; Liakata, M.; Zubiaga, A.; and Procter, R. 2017. Tdparse: Multi-target-specific sentiment recognition on twitter. In the 15th EACL, 483-493.
    • (2017) The 15th EACL , pp. 483-493
    • Wang, B.1    Liakata, M.2    Zubiaga, A.3    Procter, R.4
  • 35
    • 84929702394 scopus 로고    scopus 로고
    • Word polarity disambiguation using Bayesian model and opinion-level features
    • Xia, Y.; Cambria, E.; Hussain, A.; and Zhao, H. 2015. Word polarity disambiguation using bayesian model and opinion-level features. Cognitive Computation 7(3):369-380.
    • (2015) Cognitive Computation , vol.7 , Issue.3 , pp. 369-380
    • Xia, Y.1    Cambria, E.2    Hussain, A.3    Zhao, H.4
  • 37
    • 85040943711 scopus 로고    scopus 로고
    • Leveraging knowledge bases in lstms for improving machine reading
    • Yang, B., and Mitchell, T. 2017. Leveraging knowledge bases in lstms for improving machine reading. In the 55th ACL, 1436-1446.
    • (2017) The 55th ACL , pp. 1436-1446
    • Yang, B.1    Mitchell, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.