메뉴 건너뛰기




Volumn , Issue , 2016, Pages 507-517

Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering

Author keywords

Personalized Ranking; Recommender Systems; Fashion Evolution; Visual Dimensions

Indexed keywords

DEEP NEURAL NETWORKS; NEURAL NETWORKS; RECOMMENDER SYSTEMS; SEMANTICS; WORLD WIDE WEB;

EID: 84995779362     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2872427.2883037     Document Type: Conference Paper
Times cited : (2252)

References (40)
  • 3
    • 84945709924 scopus 로고
    • On the approximation of curves by line segments using dynamic programming
    • R. Bellman. On the approximation of curves by line segments using dynamic programming. Communications of the ACM, 1961.
    • (1961) Communications of the ACM
    • Bellman, R.1
  • 6
    • 84906861444 scopus 로고    scopus 로고
    • Is a picture really worth a thousand words?-on the role of images in e-commerce
    • W. Di, N. Sundaresan, R. Piramuthu, and A. Bhardwaj. Is a picture really worth a thousand words?-on the role of images in e-commerce. In WSDM, 2014.
    • (2014) WSDM
    • Di, W.1    Sundaresan, N.2    Piramuthu, R.3    Bhardwaj, A.4
  • 7
    • 33745798477 scopus 로고    scopus 로고
    • Time weight collaborative filtering
    • Y. Ding and X. Li. Time weight collaborative filtering. In CIKM, 2005.
    • (2005) CIKM
    • Ding, Y.1    Li, X.2
  • 10
    • 0038176550 scopus 로고    scopus 로고
    • Determinants of internet auction success and closing price: An exploratory study
    • J. H. Gilkeson and K. Reynolds. Determinants of internet auction success and closing price: An exploratory study. Psychology & Marketing, 2003.
    • (2003) Psychology & Marketing
    • Gilkeson, J.H.1    Reynolds, K.2
  • 12
    • 84991212950 scopus 로고    scopus 로고
    • Vbpr: Visual Bayesian personalized ranking from implicit feedback
    • R. He and J. McAuley. Vbpr: Visual bayesian personalized ranking from implicit feedback. CoRR, 2015.
    • (2015) CoRR
    • He, R.1    McAuley, J.2
  • 13
    • 79951757531 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM. IEEE, 2008.
    • (2008) ICDM IEEE
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 16
    • 84877599575 scopus 로고    scopus 로고
    • Getting the look: Clothing recognition and segmentation for automatic product suggestions in everyday photos
    • Y. Kalantidis, L. Kennedy, and L.-J. Li. Getting the look: clothing recognition and segmentation for automatic product suggestions in everyday photos. In ICMR, 2013.
    • (2013) ICMR
    • Kalantidis, Y.1    Kennedy, L.2    Li, L.-J.3
  • 18
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. Example weighting
    • R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis, 2004.
    • (2004) Telligent Data Analysis
    • Klinkenberg, R.1
  • 19
    • 77950364314 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. Communications of the ACM, 2010.
    • (2010) Communications of the ACM
    • Koren, Y.1
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 84858060487 scopus 로고    scopus 로고
    • Multi-relational matrix factorization using Bayesian personalized ranking for social network data
    • A. Krohn-Grimberghe, L. Drumond, C. Freudenthaler, and L. Schmidt-Thieme. Multi-relational matrix factorization using bayesian personalized ranking for social network data. In WSDM, 2012.
    • (2012) WSDM
    • Krohn-Grimberghe, A.1    Drumond, L.2    Freudenthaler, C.3    Schmidt-Thieme, L.4
  • 24
    • 84913588188 scopus 로고    scopus 로고
    • RAPID: Rating pictorial aesthetics using deep learning
    • X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. RAPID: rating pictorial aesthetics using deep learning. In MM, 2014.
    • (2014) MM
    • Lu, X.1    Lin, Z.2    Jin, H.3    Yang, J.4    Wang, J.Z.5
  • 26
  • 28
    • 84896063244 scopus 로고    scopus 로고
    • Gbpr: Group preference based Bayesian personalized ranking for one-class collaborative filtering
    • W. Pan and L. Chen. Gbpr: Group preference based bayesian personalized ranking for one-class collaborative filtering. In IJCAI, 2013.
    • (2013) IJCAI
    • Pan, W.1    Chen, L.2
  • 32
    • 85007207651 scopus 로고    scopus 로고
    • Neuroaesthetics in fashion: Modeling the perception of fashionability
    • E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and R. Urtasun. Neuroaesthetics in fashion: Modeling the perception of fashionability. In CVPR, 2014.
    • (2014) CVPR
    • Simo-Serra, E.1    Fidler, S.2    Moreno-Noguer, F.3    Urtasun, R.4
  • 33
    • 77950941535 scopus 로고    scopus 로고
    • Matchbox: Large scale online Bayesian recommendations
    • D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In WWW, 2009.
    • (2009) WWW
    • Stern, D.H.1    Herbrich, R.2    Graepel, T.3
  • 34
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work
    • A. Tsymbal. The problem of concept drift: definitions and related work. Technical Report, 2004.
    • (2004) Technical Report
    • Tsymbal, A.1
  • 36
    • 84973883538 scopus 로고    scopus 로고
    • Learning visual clothing style with heterogeneous dyadic co-occurrences
    • A. Veit, B. Kovacs, S. Bell, J. McAuley, K. Bala, and S. Belongie. Learning visual clothing style with heterogeneous dyadic co-occurrences. In ICCV, 2015.
    • (2015) ICCV
    • Veit, A.1    Kovacs, B.2    Bell, S.3    McAuley, J.4    Bala, K.5    Belongie, S.6
  • 37
    • 77952415079 scopus 로고    scopus 로고
    • Mining conceptdrifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining conceptdrifting data streams using ensemble classifiers. In SIGKDD, 2003.
    • (2003) SIGKDD
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 39
    • 84968879562 scopus 로고    scopus 로고
    • Daily-Aware personalized recommendation based on feature-level time series analysis
    • Y. Zhang, M. Zhang, Y. Zhang, G. Lai, Y. Liu, H. Zhang, and S. Ma. Daily-Aware personalized recommendation based on feature-level time series analysis. In WWW, 2015.
    • (2015) WWW
    • Zhang, Y.1    Zhang, M.2    Zhang, Y.3    Lai, G.4    Liu, Y.5    Zhang, H.6    Ma, S.7
  • 40
    • 84930194482 scopus 로고    scopus 로고
    • Leveraging social connections to improve personalized ranking for collaborative filtering
    • T. Zhao, J. McAuley, and I. King. Leveraging social connections to improve personalized ranking for collaborative filtering. In CIKM, 2014.
    • (2014) CIKM
    • Zhao, T.1    McAuley, J.2    King, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.