메뉴 건너뛰기




Volumn 7, Issue 8, 2015, Pages 9655-9681

An evaluation of different training sample allocation schemes for discrete and continuous land cover classification using decision tree-based algorithms

Author keywords

Class membership estimation; Classification tree; Discrete classification; MODIS; National land cover dataset of the united states 2006; Regression tree; Sample allocation schemes; Training data

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); DATA MINING; DECISION TREES; IMAGE RESOLUTION; PIXELS; RADIOMETERS; RANDOM ERRORS; REGRESSION ANALYSIS; SATELLITE IMAGERY;

EID: 84939449765     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs70809655     Document Type: Article
Times cited : (143)

References (61)
  • 2
    • 0029668316 scopus 로고    scopus 로고
    • A standard land-cover classification scheme for remote-sensing applications in South Africa
    • Thompsom, M. A standard land-cover classification scheme for remote-sensing applications in South Africa. S. Afr. J. Sci. 1996, 92, 34-42.
    • (1996) S. Afr. J. Sci. , vol.92 , pp. 34-42
    • Thompsom, M.1
  • 3
    • 70849104471 scopus 로고    scopus 로고
    • Determining changes and flows in European landscapes 1990-2000 using CORINE land cover data
    • Feranec, J.; Jaffraini, G.; Soukup, T.; Hazeu, G. Determining changes and flows in European landscapes 1990-2000 using CORINE land cover data. Appl. Geogr. 2010, 30, 19-35.
    • (2010) Appl. Geogr. , vol.30 , pp. 19-35
    • Feranec, J.1    Jaffraini, G.2    Soukup, T.3    Hazeu, G.4
  • 6
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data
    • Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607-2654.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.C.4    Zhao, Y.Y.5    Liang, L.6    Niu, Z.7    Huang, X.8    Fu, H.9    Liu, S.10
  • 9
    • 0032216156 scopus 로고    scopus 로고
    • Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers
    • De Fries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Sohlberg, R. Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 1998, 19, 3141-3168.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 3141-3168
    • De Fries, R.S.1    Hansen, M.C.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 10
    • 0842284655 scopus 로고    scopus 로고
    • Approaches to fractional land cover and continuous field mapping: A comparative assessment over the BOREAS study region
    • Fernandes, R.; Fraser, R.; Latifovic, R.; Cihlar, J.; Beaubien, J.; Du, Y. Approaches to fractional land cover and continuous field mapping: A comparative assessment over the BOREAS study region. Remote Sens. Environ. 2004, 89, 234-251.
    • (2004) Remote Sens. Environ. , vol.89 , pp. 234-251
    • Fernandes, R.1    Fraser, R.2    Latifovic, R.3    Cihlar, J.4    Beaubien, J.5    Du, Y.6
  • 11
    • 84907466218 scopus 로고    scopus 로고
    • Defining the spatial resolution requirements for crop identification using optical remote sensing
    • Löw, F.; Duveiller, G. Defining the spatial resolution requirements for crop identification using optical remote sensing. Remote Sens. 2014, 6, 9034-9063.
    • (2014) Remote Sens. , vol.6 , pp. 9034-9063
    • Löw, F.1    Duveiller, G.2
  • 12
    • 0036846098 scopus 로고    scopus 로고
    • Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data
    • Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R.; Dimiceli, C.; Carroll, M. Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sens. Environ. 2002, 83, 303-319.
    • (2002) Remote Sens. Environ. , vol.83 , pp. 303-319
    • Hansen, M.C.1    DeFries, R.S.2    Townshend, J.R.G.3    Sohlberg, R.4    Dimiceli, C.5    Carroll, M.6
  • 13
    • 0028431067 scopus 로고
    • Scale-dependent errors in the estimation of land-cover proportions: Implications for Global Land-Cover Datasets
    • Moody, A.; Woodcock, C.E. Scale-dependent errors in the estimation of land-cover proportions: Implications for Global Land-Cover Datasets. Photogramm. Eng. Remote Sens. 1994, 60, 584-594.
    • (1994) Photogramm. Eng. Remote Sens. , vol.60 , pp. 584-594
    • Moody, A.1    Woodcock, C.E.2
  • 14
    • 0034212991 scopus 로고    scopus 로고
    • High spatial resolution remote sensing data for forest ecosystem classification: An examination of spatial scale
    • Treitz, P.; Howarth, P. High spatial resolution remote sensing data for forest ecosystem classification: An examination of spatial scale. Remote Sens. Environ. 2000, 72, 268-289.
    • (2000) Remote Sens. Environ. , vol.72 , pp. 268-289
    • Treitz, P.1    Howarth, P.2
  • 15
    • 71349086465 scopus 로고    scopus 로고
    • Remote sensing of land cover classes as type 2 fuzzy sets
    • Fisher, P.F. Remote sensing of land cover classes as type 2 fuzzy sets. Remote Sens. Environ. 2010, 114, 309-321.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 309-321
    • Fisher, P.F.1
  • 17
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery
    • Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964-983.
    • (2014) Remote Sens. , vol.6 , pp. 964-983
    • Li, C.1    Wang, J.2    Wang, L.3    Hu, L.4    Gong, P.5
  • 18
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl, M.A.; Brodley, C.E.; Strahler, A.H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens. 1999, 37, 969-977.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 19
    • 0028582679 scopus 로고
    • NDVI derived land cover classifications at a global scale
    • DeFries, R.S.; Townshend, J.R.G. NDVI derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567-3586.
    • (1994) Int. J. Remote Sens. , vol.15 , pp. 3567-3586
    • DeFries, R.S.1    Townshend, J.R.G.2
  • 20
    • 0033080043 scopus 로고    scopus 로고
    • Fuzzy neural network classification of global land cover from a 1° AVHRR Data Set
    • Gopal, S.; Woodcock, C.E.; Strahler, A.H. Fuzzy neural network classification of global land cover from a 1° AVHRR Data Set. Remote Sens. Environ. 1999, 67, 230-243.
    • (1999) Remote Sens. Environ. , vol.67 , pp. 230-243
    • Gopal, S.1    Woodcock, C.E.2    Strahler, A.H.3
  • 21
    • 84865709617 scopus 로고    scopus 로고
    • Land change for all municipalities in Latin America and the Caribbean assessed from 250-m MODIS imagery (2001-2010)
    • Clark, M.L.; Aide, T.M.; Riner, G. Land change for all municipalities in Latin America and the Caribbean assessed from 250-m MODIS imagery (2001-2010). Remote Sens. Environ. 2012, 126, 84-103.
    • (2012) Remote Sens. Environ. , vol.126 , pp. 84-103
    • Clark, M.L.1    Aide, T.M.2    Riner, G.3
  • 25
    • 0042922539 scopus 로고    scopus 로고
    • Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data
    • Yang, L.; Xian, G.; Klaver, J.M.; Deal, B. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogramm. Eng. Remote Sens. 2003, 69, 1003-1010.
    • (2003) Photogramm. Eng. Remote Sens. , vol.69 , pp. 1003-1010
    • Yang, L.1    Xian, G.2    Klaver, J.M.3    Deal, B.4
  • 26
    • 0033586445 scopus 로고    scopus 로고
    • Feature selection and land cover classification of a MODIS-like data set for a semiarid environment
    • Borak, J.S.; Strahler, A.H. Feature selection and land cover classification of a MODIS-like data set for a semiarid environment. Int. J. Remote Sens. 1999, 20, 919-938.
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 919-938
    • Borak, J.S.1    Strahler, A.H.2
  • 27
    • 81355138685 scopus 로고    scopus 로고
    • Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions
    • Colditz, R.R.; Schmidt, M.; Conrad, C.; Hansen, M.C.; Dech, S. Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions. Remote Sens. Environ. 2011, 115, 3264-3275.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 3264-3275
    • Colditz, R.R.1    Schmidt, M.2    Conrad, C.3    Hansen, M.C.4    Dech, S.5
  • 28
    • 81755185783 scopus 로고    scopus 로고
    • Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems
    • Conrad, C.; Colditz, R.R.; Dech, S.; Klein, D.; Vlek, P.L.G. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. Int. J. Remote Sens. 2011, 32, 8763-8778.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 8763-8778
    • Conrad, C.1    Colditz, R.R.2    Dech, S.3    Klein, D.4    Vlek, P.L.G.5
  • 29
    • 65849368950 scopus 로고    scopus 로고
    • Evaluation of annual forest disturbance monitoring using a static decision tree approach and 250 m MODIS data
    • Pouliot, D.; Latifovic, R.; Fernandes, R.; Olthof, I. Evaluation of annual forest disturbance monitoring using a static decision tree approach and 250 m MODIS data. Remote Sens. Environ. 2009, 113, 1749-1759.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1749-1759
    • Pouliot, D.1    Latifovic, R.2    Fernandes, R.3    Olthof, I.4
  • 30
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554-565.
    • (2003) Remote Sens. Environ. , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 32
    • 84896836907 scopus 로고    scopus 로고
    • Assessing the impact of training sample extraction on accuracy of an urban classification: A case study in Denver, Colorado
    • Jin, H.; Stehman, S.V.; Mountrakis, G. Assessing the impact of training sample extraction on accuracy of an urban classification: A case study in Denver, Colorado. Int. J. Remote Sens. 2014, 35, 2067-2081.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 2067-2081
    • Jin, H.1    Stehman, S.V.2    Mountrakis, G.3
  • 33
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1 km spatial resolution using a classification tree approach
    • Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331-1364.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1331-1364
    • Hansen, M.C.1    DeFries, R.S.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 34
    • 84855469971 scopus 로고    scopus 로고
    • Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data
    • Im, J.; Lu, Z.; Rhee, J.; Quackenbush, L. Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sens. Environ. 2012, 117, 102-113.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 102-113
    • Im, J.1    Lu, Z.2    Rhee, J.3    Quackenbush, L.4
  • 35
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179-189.
    • (2006) Remote Sens. Environ. , vol.103 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 36
    • 85051302757 scopus 로고    scopus 로고
    • Classification trees and mixed pixel training data
    • Giri, C.P., Ed.; CRC/Taylor & Francis: Boca Raton, FL, USA
    • Hansen, M.C. Classification trees and mixed pixel training data. In Remote Sensing of Land Use and Land Cover: Principles and Applications; Giri, C.P., Ed.; CRC/Taylor & Francis: Boca Raton, FL, USA, 2012; pp. 127-136.
    • (2012) Remote Sensing of Land Use and Land Cover: Principles and Applications , pp. 127-136
    • Hansen, M.C.1
  • 38
    • 64549085340 scopus 로고    scopus 로고
    • Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
    • Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133-1147.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1133-1147
    • Xian, G.1    Homer, C.2    Fry, J.3
  • 39
    • 84873701764 scopus 로고    scopus 로고
    • A comprehensive change detection method for updating the National Land Cover Database to circa 2011
    • Jin, S.; Yang, L.; Danielson, P.; Homer, C.; Fry, J.; Xian, G. A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ. 2013, 132, 159-175.
    • (2013) Remote Sens. Environ. , vol.132 , pp. 159-175
    • Jin, S.1    Yang, L.2    Danielson, P.3    Homer, C.4    Fry, J.5    Xian, G.6
  • 44
    • 53849138074 scopus 로고    scopus 로고
    • TiSeG: A flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set
    • Colditz, R.R.; Conrad, C.; Wehrmann, T.; Schmidt, M.; Dech, S. TiSeG: A flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3296-3308.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 3296-3308
    • Colditz, R.R.1    Conrad, C.2    Wehrmann, T.3    Schmidt, M.4    Dech, S.5
  • 47
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399-409.
    • (1997) Remote Sens. Environ. , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 48
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 50
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 53
    • 55349114714 scopus 로고    scopus 로고
    • Subpixel urban land cover estimation: Comparing cubist, random forests, and support vector regression
    • Walton, J.T. Subpixel urban land cover estimation: Comparing cubist, random forests, and support vector regression. Photogramm. Eng. Remote Sens. 2008, 74, 1213-1222.
    • (2008) Photogramm. Eng. Remote Sens. , vol.74 , pp. 1213-1222
    • Walton, J.T.1
  • 54
    • 77955315839 scopus 로고    scopus 로고
    • Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat imagery change detection methods
    • Xian, G.; Homer, C. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat imagery change detection methods. Remote Sens. Environ. 2010, 114, 1676-1686.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1676-1686
    • Xian, G.1    Homer, C.2
  • 55
    • 84949812908 scopus 로고    scopus 로고
    • Accuracy assessment
    • Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; SAGE Publications Ltd.: Thousand Oaks, CA, USA
    • Stehman, S.V.; Foody, G.M. Accuracy assessment. In The SAGE Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 297-311.
    • (2009) The SAGE Handbook of Remote Sensing , pp. 297-311
    • Stehman, S.V.1    Foody, G.M.2
  • 56
    • 33750084387 scopus 로고    scopus 로고
    • Comparison of pixel-based and object-oriented image classification approaches-A case study in a coal fire area, Wuda, Inner Mongolia, China
    • Gao, Y.; Mas, J.-F.; Maathuis, B.H.P.; Zhang, X.; van Dijk, P.M. Comparison of pixel-based and object-oriented image classification approaches-A case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote Sens. 2006, 27, 4039-4055.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 4039-4055
    • Gao, Y.1    Mas, J.-F.2    Maathuis, B.H.P.3    Zhang, X.4    van Dijk, P.M.5
  • 57
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627-633.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 58
    • 0141940260 scopus 로고    scopus 로고
    • An Experimental assessment of minimum mapping unit size
    • Knight, J.F.; Lunetta, R.S. An Experimental assessment of minimum mapping unit size. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2132-2134.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 2132-2134
    • Knight, J.F.1    Lunetta, R.S.2
  • 59
    • 79954739964 scopus 로고    scopus 로고
    • On the suitability of MODIS time series metrics to map vegetation types in dry Savanna ecosystems: A case study in the Kalahari of NE Namibia
    • Hüttich, C.; Gessner, U.; Herold, M.; Strohbach, B.J.; Schmidt, M.; Keil, M.; Dech, S. On the suitability of MODIS time series metrics to map vegetation types in dry Savanna ecosystems: A case study in the Kalahari of NE Namibia. Remote Sens. 2009, 1, 620-643.
    • (2009) Remote Sens. , vol.1 , pp. 620-643
    • Hüttich, C.1    Gessner, U.2    Herold, M.3    Strohbach, B.J.4    Schmidt, M.5    Keil, M.6    Dech, S.7
  • 60
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre and within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson, D.M. An assessment of pre and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116-128.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 61
    • 0035439610 scopus 로고    scopus 로고
    • Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods
    • McIver, D.K.; Friedl, M.A. Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1959-1968.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 1959-1968
    • McIver, D.K.1    Friedl, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.