메뉴 건너뛰기




Volumn 8, Issue 6, 2016, Pages

Tree species classification using hyperspectral imagery: A comparison of two classifiers

Author keywords

Hyperspectral imagery; Random forest; Support vector machine; Tree species classification

Indexed keywords

COMPUTER INTEGRATED MANUFACTURING; DECISION TREES; FORESTRY; IMAGE SEGMENTATION; REMOTE SENSING; SAMPLING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84974801090     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs8060445     Document Type: Article
Times cited : (155)

References (55)
  • 2
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    • Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416-1427.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 3
    • 84874785808 scopus 로고    scopus 로고
    • Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa
    • Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 2013, 79, 19-28.
    • (2013) ISPRS J. Photogramm. Remote Sens , vol.79 , pp. 19-28
    • Peerbhay, K.Y.1    Mutanga, O.2    Ismail, R.3
  • 4
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
    • Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinform. 2014, 26, 49-63.
    • (2014) Int. J. Appl. Earth Obs. Geoinform , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.K.3    Koch, B.4
  • 8
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral Image Data Analysis as a High Dimensional Signal Processing Problem
    • Landgrebe, D. Hyperspectral Image Data Analysis as a High Dimensional Signal Processing Problem. IEEE Signal Process. Mag. 2002, 19, 17-28.
    • (2002) IEEE Signal Process. Mag , vol.19 , pp. 17-28
    • Landgrebe, D.1
  • 10
    • 34250875291 scopus 로고    scopus 로고
    • Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results
    • Van Aardt, J.A.N.; Wynne, R.H. Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field-based results. Int. J. Remote Sens. 2007, 28, 431-436.
    • (2007) Int. J. Remote Sens , vol.28 , pp. 431-436
    • Van Aardt, J.A.N.1    Wynne, R.H.2
  • 11
    • 0032157733 scopus 로고    scopus 로고
    • Determining forest species composition using high spectral resolution remote sensing data
    • Martin, M.E.; Newman, S.D.; Aber, J.D.; Congalton, R.G. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ. 1998, 65, 249-254.
    • (1998) Remote Sens. Environ , vol.65 , pp. 249-254
    • Martin, M.E.1    Newman, S.D.2    Aber, J.D.3    Congalton, R.G.4
  • 12
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375-398.
    • (2005) Remote Sens. Environ , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 13
    • 84903441127 scopus 로고    scopus 로고
    • Classification of multispectral images using Random Forest algorithm
    • Akar, Ö.; Güngör, O. Classification of multispectral images using Random Forest algorithm. J. Geod. Geoinform. 2012, 1, 105-112.
    • (2012) J. Geod. Geoinform , vol.1 , pp. 105-112
    • Akar, Ö.1    Güngör, O.2
  • 14
    • 40049088615 scopus 로고    scopus 로고
    • Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images
    • Holmgren, J.; Persson, A.; Söderman, U. Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int. J. Remote Sens. 2008, 29, 1537-1552.
    • (2008) Int. J. Remote Sens , vol.29 , pp. 1537-1552
    • Holmgren, J.1    Persson, A.2    Söderman, U.3
  • 15
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258-270.
    • (2012) Remote Sens. Environ , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 16
    • 0035124583 scopus 로고    scopus 로고
    • A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest
    • Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sens. Environ. 2001, 75, 100-112.
    • (2001) Remote Sens. Environ , vol.75 , pp. 100-112
    • Key, T.1    Warner, T.A.2    McGraw, J.B.3    Fajvan, M.A.4
  • 17
    • 0034627794 scopus 로고    scopus 로고
    • Incorporating texture into classification of forest species composition from airborne multispectral images
    • Franklin, S.E.; Hall, R.J.; Moskal, L.M.; Maudie, A.J.; Lavigne, M.B. Incorporating texture into classification of forest species composition from airborne multispectral images. Int. J. Remote Sens. 2000, 21, 61-79.
    • (2000) Int. J. Remote Sens , vol.21 , pp. 61-79
    • Franklin, S.E.1    Hall, R.J.2    Moskal, L.M.3    Maudie, A.J.4    Lavigne, M.B.5
  • 18
    • 4143076953 scopus 로고    scopus 로고
    • Why use hyperspectral imagery?
    • Shippert, P. Why use hyperspectral imagery? Photogramm. Eng. Remote Sens. 2004, 70, 377-396.
    • (2004) Photogramm. Eng. Remote Sens , vol.70 , pp. 377-396
    • Shippert, P.1
  • 19
    • 84864524799 scopus 로고    scopus 로고
    • Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation
    • Heinzel, J.; Koch, B. Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int. J. Appl. Earth Obs. Geoinform. 2012, 18, 101-110.
    • (2012) Int. J. Appl. Earth Obs. Geoinform , vol.18 , pp. 101-110
    • Heinzel, J.1    Koch, B.2
  • 20
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367-2379.
    • (2010) Pattern Recognit , vol.43 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 21
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
    • Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114, 2841-2852.
    • (2010) Remote Sens. Environ , vol.114 , pp. 2841-2852
    • Jones, T.G.1    Coops, N.C.2    Sharma, T.3
  • 22
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inform. Theory 1968, 14, 55-63.
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 23
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 24
    • 77957854773 scopus 로고    scopus 로고
    • Comparison of support vector machine-based processing chains for hyperspectral image classification
    • Rojas, M.; Dópido, I.; Plaza, A.; Gamba, P. Comparison of support vector machine-based processing chains for hyperspectral image classification. Proc. SPIE 2010.
    • (2010) Proc. SPIE
    • Rojas, M.1    Dópido, I.2    Plaza, A.3    Gamba, P.4
  • 25
    • 44649176419 scopus 로고    scopus 로고
    • Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach
    • Voss, M.; Sugumaran, R. Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 2008, 8, 3020-3036.
    • (2008) Sensors , vol.8 , pp. 3020-3036
    • Voss, M.1    Sugumaran, R.2
  • 26
    • 33745092487 scopus 로고    scopus 로고
    • Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods
    • Buddenbaum, H.; Schlerf, M.; Hill, J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. Int. J. Remote Sens. 2005, 26, 5453-5465.
    • (2005) Int. J. Remote Sens , vol.26 , pp. 5453-5465
    • Buddenbaum, H.1    Schlerf, M.2    Hill, J.3
  • 27
    • 81455155735 scopus 로고    scopus 로고
    • Support vector machine based classification for hyperspectral remote sensing images after minimum noise fraction rotation transformation
    • Hong Kong, China, 17-18 September
    • Denghui, Z.; Le, Y. Support vector machine based classification for hyperspectral remote sensing images after minimum noise fraction rotation transformation. In Proceedings of the 2011 International Conference on Internet Computing & Information Services (ICICIS), Hong Kong, China, 17-18 September 2011.
    • (2011) Proceedings of the 2011 International Conference on Internet Computing & Information Services (ICICIS)
    • Denghui, Z.1    Le, Y.2
  • 28
    • 84974790271 scopus 로고    scopus 로고
    • Exelis Visual Information Solutions: Boulder, CO, USA
    • Exelis Visual Information Solutions. ENVI Help; Exelis Visual Information Solutions: Boulder, CO, USA, 2013.
    • (2013) ENVI Help
  • 29
    • 10844244035 scopus 로고    scopus 로고
    • Using AVIRIS data and multiple-masking techniques to map urban forest tree species
    • Xiao, Q.; Ustin, S.L.; McPherson, E.G. Using AVIRIS data and multiple-masking techniques to map urban forest tree species. Int. J. Remote Sens. 2004, 25, 5637-5654.
    • (2004) Int. J. Remote Sens , vol.25 , pp. 5637-5654
    • Xiao, Q.1    Ustin, S.L.2    McPherson, E.G.3
  • 30
    • 84884919541 scopus 로고    scopus 로고
    • Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
    • Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Naesset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306-317.
    • (2014) Remote Sens. Environ , vol.140 , pp. 306-317
    • Dalponte, M.1    Ørka, H.O.2    Ene, L.T.3    Gobakken, T.4    Naesset, E.5
  • 31
    • 84898634853 scopus 로고    scopus 로고
    • Urban tree species mapping using hyperspectral and lidar data fusion
    • Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70-83.
    • (2014) Remote Sens. Environ , vol.148 , pp. 70-83
    • Alonzo, M.1    Bookhagen, B.2    Roberts, D.A.3
  • 34
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 37
    • 84974783992 scopus 로고    scopus 로고
    • (accessed on 22 October 2014)
    • National Parks Conservation Association. State of the Parks, Muir Woods National Monument: A Resource Assessment. 2011. Available online: http://www.npca.org/about-us/center-for-parkresearch/stateoftheparks/muir_woods/MuirWoods.pdf (accessed on 22 October 2014).
    • (2011) State of the Parks, Muir Woods National Monument: A Resource Assessment
  • 39
    • 84974835626 scopus 로고    scopus 로고
    • (accessed on 22 October 2014)
    • National Park Service. Muir Woods: 100th Anniversary 2008; 2008. Available online: http://www.nps.gov/muwo/upload/unigrid_muwo.pdf (accessed on 22 October 2014).
    • (2008) Muir Woods: 100th Anniversary 2008
  • 41
    • 84974783999 scopus 로고    scopus 로고
    • University of Victoria-Hyperspectral-LiDAR Research Laboratory: Victoria, BC, Canada
    • Stephen, R. GGLP SFSU Hyperspectral Processing Report; University of Victoria-Hyperspectral-LiDAR Research Laboratory: Victoria, BC, Canada, 2013.
    • (2013) GGLP SFSU Hyperspectral Processing Report
    • Stephen, R.1
  • 42
    • 84974829256 scopus 로고    scopus 로고
    • (accessed on 30 April 2013)
    • QCoherent. LP360, Version 2013. Available online: http://www.qcoherent.com/(accessed on 30 April 2013).
    • (2013) QCoherent. LP360, Version
  • 44
    • 84974844924 scopus 로고    scopus 로고
    • (accessed on 12 May 2015)
    • Trimble. eCognition Developer, Version 9.1. Available online: http://www.ecognition.com (accessed on 12 May 2015).
    • eCognition Developer, Version 9.1
  • 45
    • 84974787225 scopus 로고    scopus 로고
    • Trimble: Munich, Germany
    • Trimble. eCognition: User Guide 9.1; Trimble: Munich, Germany, 2015.
    • (2015) eCognition: User Guide 9.1
  • 49
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35-46.
    • (1991) Remote Sens. Environ , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 50
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297-2307.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 51
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance differences in classification accuracy
    • Foody, G. Thematic map comparison: Evaluating the statistical significance differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627-633.
    • (2004) Photogramm. Eng. Remote Sens , vol.70 , pp. 627-633
    • Foody, G.1
  • 53
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10, 1895-1923.
    • (1998) Neural Comput , vol.10 , pp. 1895-1923
    • Dietterich, T.1
  • 54
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272.
    • (2012) Remote Sens. Environ , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 55
    • 84902481208 scopus 로고    scopus 로고
    • Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques
    • Zhang, C.; Xie, Z. Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques. Wetlands 2013, 33, 233-244.
    • (2013) Wetlands , vol.33 , pp. 233-244
    • Zhang, C.1    Xie, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.