메뉴 건너뛰기




Volumn 6, Issue 2, 2014, Pages 964-983

Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery

Author keywords

Logistic regression; Machine learning; Maximum likelihood classification; Random forests; Support vector machine; Tree classifiers

Indexed keywords


EID: 84894607481     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs6020964     Document Type: Article
Times cited : (336)

References (54)
  • 1
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D.S.; Weng, Q.H. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823-870.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 823-870
    • Lu, D.S.1    Weng, Q.H.2
  • 2
    • 0026613605 scopus 로고
    • Land-use classification of SPOT HRV data using a cover-frequency method
    • Gong, P.; Howarth, P.J. Land-use classification of SPOT HRV data using a cover-frequency method. Int. J. Remote Sens. 1992, 13, 1459-1471.
    • (1992) Int. J. Remote Sens. , vol.13 , pp. 1459-1471
    • Gong, P.1    Howarth, P.J.2
  • 3
    • 79960061887 scopus 로고    scopus 로고
    • Object-based detailed land-cover classification with high spatial resolution IKONOS imagery
    • Pu, R.L.; Landry, S.; Yu, Q. Object-based detailed land-cover classification with high spatial resolution IKONOS imagery. Int. J. Remote Sens. 2011, 32, 3285-3308.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 3285-3308
    • Pu, R.L.1    Landry, S.2    Yu, Q.3
  • 4
    • 0142009649 scopus 로고    scopus 로고
    • A hierarchical fuzzy classification approach for high resolution multispectral data over urban areas
    • Shackelford, A.K.; Davis, C.H. A hierarchical fuzzy classification approach for high resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1920-1932.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 1920-1932
    • Shackelford, A.K.1    Davis, C.H.2
  • 5
    • 67650863412 scopus 로고    scopus 로고
    • An adaptive thresholding multiple classifiers system for remote sensing image classification
    • Tzeng, Y.C.; Fan, K.T.; Chen, K.S. An adaptive thresholding multiple classifiers system for remote sensing image classification. Photogramm. Eng. Remote Sens. 2009, 75, 679-687.
    • (2009) Photogramm. Eng. Remote Sens. , vol.75 , pp. 679-687
    • Tzeng, Y.C.1    Fan, K.T.2    Chen, K.S.3
  • 6
    • 14644406807 scopus 로고    scopus 로고
    • Results and implications of a study of fifteen years of satellite image classification experiments
    • Wilkinson, G.G. Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Trans. Geosci. Remote Sens. 2005, 43, 433-440.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 433-440
    • Wilkinson, G.G.1
  • 7
    • 0025662144 scopus 로고
    • An assessment of some factors influencing multispectral land-cover classification
    • Gong, P.; Howarth, P.J. An assessment of some factors influencing multispectral land-cover classification. Photogramm. Eng. Remote Sens. 1990, 56, 597-603.
    • (1990) Photogramm. Eng. Remote Sens. , vol.56 , pp. 597-603
    • Gong, P.1    Howarth, P.J.2
  • 8
    • 70350754128 scopus 로고    scopus 로고
    • Evaluating the temporal and spatial urban expansion patterns of Guangzhou from 1979 to 2003 by remote sensing and GIS methods
    • Fan F.L.; Wang, Y.P.; Qiu, M.H.; Wang, Z.S. Evaluating the temporal and spatial urban expansion patterns of Guangzhou from 1979 to 2003 by remote sensing and GIS methods. Int. J. Geogr. Inf. Sci. 2009, 23, 1371-1388.
    • (2009) Int. J. Geogr. Inf. Sci. , vol.23 , pp. 1371-1388
    • Fan, F.L.1    Wang, Y.P.2    Qiu, M.H.3    Wang, Z.S.4
  • 9
    • 34547613687 scopus 로고    scopus 로고
    • Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on Landsat TM/ETM+ imagery
    • Fan, F.L.; Weng, Q.H.; Wang, Y.P. Land use and land cover change in Guangzhou, China, from 1998 to 2003, based on Landsat TM/ETM+ imagery. Sensors 2007, 7, 1223-1342.
    • (2007) Sensors , vol.7 , pp. 1223-1342
    • Fan, F.L.1    Weng, Q.H.2    Wang, Y.P.3
  • 11
    • 0035141621 scopus 로고    scopus 로고
    • Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?
    • Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230-244.
    • (2001) Remote Sens. Environ. , vol.75 , pp. 230-244
    • Song, C.1    Woodcock, C.E.2    Seto, K.C.3    Lenney, M.P.4    Macomber, S.A.5
  • 12
    • 0026856359 scopus 로고
    • A comparison of spatial feature extraction algorithms for land-use mapping with SPOT HRV data
    • Gong, P.; Marceau, D.; Howarth, P.J. A comparison of spatial feature extraction algorithms for land-use mapping with SPOT HRV data. Remote Sens. Environ. 1992, 40, 137-151.
    • (1992) Remote Sens. Environ. , vol.40 , pp. 137-151
    • Gong, P.1    Marceau, D.2    Howarth, P.J.3
  • 13
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: First mapping results with landsat TM and ETM+ data
    • Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607-2654.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.4    Zhao, Y.5    Liang, L.6    Niu, Z.7    Huang, X.8    Fu, H.9    Liu, S.10
  • 16
    • 0027067290 scopus 로고
    • Variability and bias in experimentally measured classifier error rates
    • Piper, J. Variability and bias in experimentally measured classifier error rates. Pattern Recognit. Lett. 1992, 13, 685-692.
    • (1992) Pattern Recognit. Lett. , vol.13 , pp. 685-692
    • Piper, J.1
  • 17
    • 26944473196 scopus 로고    scopus 로고
    • On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification
    • Van Niel, T.; McVicar, T.; Datt, B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sens. Environ. 2005, 98, 468-480.
    • (2005) Remote Sens. Environ. , vol.98 , pp. 468-480
    • Van Niel, T.1    McVicar, T.2    Datt, B.3
  • 20
    • 84880348709 scopus 로고    scopus 로고
    • Clustering based on eigenspace transformation-CBEST for efficient classification
    • Chen, Y.; Gong, P. Clustering based on eigenspace transformation-CBEST for efficient classification. ISPRS J. Photogramm. Remote Sens. 2013, 83, 64-80.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.83 , pp. 64-80
    • Chen, Y.1    Gong, P.2
  • 21
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37-66.
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 22
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie, S.; van Houwelingen, J.C. Ridge estimators in logistic regression. Appl. Stat. 1992, 41, 191-201.
    • (1992) Appl. Stat. , vol.41 , pp. 191-201
    • Le Cessie, S.1    van Houwelingen, J.C.2
  • 25
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815-840.
    • (1997) Stat. Sin. , vol.7 , pp. 815-840
    • Loh, W.Y.1    Shih, Y.S.2
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 29
  • 31
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 33
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367-378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 37
    • 67650757105 scopus 로고    scopus 로고
    • (accessed on 21 September 2009).
    • Ridgeway, G. Generalized Boosted Models: A Guide to the GBM Package. Available online: https://r-forge.r-roject.org/scm/viewvc.php/*checkout*/pkg/inst/doc/gbm.pdf?revision=17&root= gbm&pathrev=18 (accessed on 21 September 2009).
    • Generalized Boosted Models: A Guide to the GBM Package
    • Ridgeway, G.1
  • 39
    • 85081804620 scopus 로고    scopus 로고
    • CiteSeerX. (accessed on 16 January 2014).
    • Clinton, N. BerkeleyImageSeg User's Guide. CiteSeerX. 2010. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.1324&rep=rep1&type=pdf (accessed on 16 January 2014).
    • (2010) BerkeleyImageSeg User's Guide
    • Clinton, N.1
  • 40
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606-616.
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , pp. 606-616
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 44
    • 10844220846 scopus 로고    scopus 로고
    • Integration of object-based and pixel-based classification for mangrove mapping with IKONOS imagery
    • Wang, L.; Sousa, W.; Gong, P. Integration of object-based and pixel-based classification for mangrove mapping with IKONOS imagery. Int. J. Remote Sens. 2004, 25, 5655-5668.
    • (2004) Int. J. Remote Sens. , vol.25 , pp. 5655-5668
    • Wang, L.1    Sousa, W.2    Gong, P.3
  • 45
    • 0025247448 scopus 로고
    • The use of structural information for improving land-cover classification accuracies at the rural-urban fringe
    • Gong, P.; Howarth, P.J. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm. Eng. Remote Sens. 1990, 56, 67-73.
    • (1990) Photogramm. Eng. Remote Sens. , vol.56 , pp. 67-73
    • Gong, P.1    Howarth, P.J.2
  • 46
    • 0026846026 scopus 로고
    • Frequency-based contextual classification and grey-level vector reduction for land-use identification
    • Gong, P.; Howarth, P.J. Frequency-based contextual classification and grey-level vector reduction for land-use identification. Photogramm. Eng. Remote Sens. 1992, 58, 423-437.
    • (1992) Photogramm. Eng. Remote Sens. , vol.58 , pp. 423-437
    • Gong, P.1    Howarth, P.J.2
  • 47
    • 0037800422 scopus 로고    scopus 로고
    • Comparison of different gray-level reduction schemes for a revised texture spectrum method for land-use classification using IKONOS imagery
    • Xu, B.; Gong, P.; Seto, E.; Spear, R. Comparison of different gray-level reduction schemes for a revised texture spectrum method for land-use classification using IKONOS imagery. Photogramm. Eng. Remote Sens. 2003, 6, 529-536.
    • (2003) Photogramm. Eng. Remote Sens. , vol.6 , pp. 529-536
    • Xu, B.1    Gong, P.2    Seto, E.3    Spear, R.4
  • 48
    • 33644753678 scopus 로고    scopus 로고
    • A spatial-temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery
    • Liu D.; Kelly, M.; Gong, P. A spatial-temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery. Remote Sens. Environ. 2006, 101, 167-180.
    • (2006) Remote Sens. Environ. , vol.101 , pp. 167-180
    • Liu, D.1    Kelly, M.2    Gong, P.3
  • 49
    • 85007884501 scopus 로고    scopus 로고
    • A comparison of object-based and contextual pixel-based classifications using high and medium spatial resolution images
    • Cai, S.S.; Liu, D.S. A comparison of object-based and contextual pixel-based classifications using high and medium spatial resolution images. Remote Sens. Lett. 2013, 4, 998-1007.
    • (2013) Remote Sens. Lett. , vol.4 , pp. 998-1007
    • Cai, S.S.1    Liu, D.S.2
  • 50
    • 84880646739 scopus 로고    scopus 로고
    • Object features for pixel-based classification of urban areas comparing different machine learning algorithms
    • Wolf, N. Object features for pixel-based classification of urban areas comparing different machine learning algorithms. Photogramm. Fernerkund. 2013, 3, 149-161.
    • (2013) Photogramm. Fernerkund. , vol.3 , pp. 149-161
    • Wolf, N.1
  • 51
    • 80052804477 scopus 로고    scopus 로고
    • Converting local spectral and spatial information from a priori classifiers into contextual knowledge for impervious surface classification
    • Luo, L.; Mountrakis, G. Converting local spectral and spatial information from a priori classifiers into contextual knowledge for impervious surface classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, 579-587.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 579-587
    • Luo, L.1    Mountrakis, G.2
  • 52
    • 84855458471 scopus 로고    scopus 로고
    • Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends
    • Weng, Q.H. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34-49.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 34-49
    • Weng, Q.H.1
  • 53
    • 84874548105 scopus 로고    scopus 로고
    • Human settlements: A global challenge for EO data processing and interpretation
    • Gamba, P. Human settlements: A global challenge for EO data processing and interpretation. IEEE Proc. 2013, 101, 570-581.
    • (2013) IEEE Proc. , vol.101 , pp. 570-581
    • Gamba, P.1
  • 54
    • 84874802882 scopus 로고    scopus 로고
    • Assessing reference dataset representativeness through confidence metrics based on information density
    • Mountrakis, G.; Xi, B. Assessing reference dataset representativeness through confidence metrics based on information density. ISPRS J. Photogramm. Remote Sens. 2011, 78, 129-147.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.78 , pp. 129-147
    • Mountrakis, G.1    Xi, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.