-
1
-
-
85028926011
-
Biomimetic approaches for bone tissue engineering
-
PubMed PMID: 27912680; PubMed Central PMCID: PMC5653138
-
Ng J, Spiller K, Bernhard J, et al. Biomimetic approaches for bone tissue engineering. Tissue Eng Part B Rev. 2017;23(5):480–493. doi:10.1089/ten.TEB.2016.0289. PubMed PMID: 27912680; PubMed Central PMCID: PMC5653138.
-
(2017)
Tissue Eng Part B Rev
, vol.23
, Issue.5
, pp. 480-493
-
-
Ng, J.1
Spiller, K.2
Bernhard, J.3
-
2
-
-
85011841808
-
Artificial bone via bone tissue engineering: current scenario and challenges
-
Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med. 2017;14(1):1–14.10.1007/s13770-016-0001-6
-
(2017)
Tissue Eng Regen Med
, vol.14
, Issue.1
, pp. 1-14
-
-
Kashte, S.1
Jaiswal, A.K.2
Kadam, S.3
-
3
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543.10.1016/S0142-9612(00)00121-6
-
(2000)
Biomaterials
, vol.21
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
4
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
PubMed PMID: 16504284
-
Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431. doi:10.1016/j.biomaterials.2006.01.039. PubMed PMID: 16504284.
-
(2006)
Biomaterials
, vol.27
, Issue.18
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.Z.2
Blaker, J.J.3
-
5
-
-
84961208052
-
Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering
-
Islam MS, Todo M. Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett. 2016;173:231–234. doi:10.1016/j.matlet.2016.03.028.
-
(2016)
Mater Lett
, vol.173
, pp. 231-234
-
-
Islam, M.S.1
Todo, M.2
-
6
-
-
84917690564
-
Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering
-
PubMed PMID: 25481441
-
Quinlan E, López-Noriega A, Thompson E, et al. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release. 2015;198:71–79. doi:10.1016/j.jconrel.2014.11.021. PubMed PMID: 25481441.
-
(2015)
J Control Release
, vol.198
, pp. 71-79
-
-
Quinlan, E.1
López-Noriega, A.2
Thompson, E.3
-
7
-
-
84920766650
-
Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells
-
PubMed PMID: 24909953; PubMed Central PMCID: PMC4380129
-
Villa MM, Wang L, Huang J, et al. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res Part B Appl Biomater. 2015;103(2):243–253. doi:10.1002/jbm.b.33225. PubMed PMID: 24909953; PubMed Central PMCID: PMC4380129.
-
(2015)
J Biomed Mater Res Part B Appl Biomater
, vol.103
, Issue.2
, pp. 243-253
-
-
Villa, M.M.1
Wang, L.2
Huang, J.3
-
8
-
-
4344636836
-
Silk fibroin regulated mineralization of hydroxyapatite nanocrystals
-
Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J Cryst Growth. 2004;270(1–2):197–202.10.1016/j.jcrysgro.2004.06.007
-
(2004)
J Cryst Growth
, vol.270
, Issue.1-2
, pp. 197-202
-
-
Kong, X.D.1
Cui, F.Z.2
Wang, X.M.3
-
9
-
-
0242573190
-
Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture
-
Hu Q. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials. 2004;25(5):779–785. doi:10.1016/s0142-9612(03)00582-9.
-
(2004)
Biomaterials
, vol.25
, Issue.5
, pp. 779-785
-
-
Hu, Q.1
-
10
-
-
84865306191
-
Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials
-
PubMed PMID: 23044099
-
Chang C, Peng N, He M, et al. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym. 2013;91(1):7–13. doi:10.1016/j.carbpol.2012.07.070. PubMed PMID: 23044099.
-
(2013)
Carbohydr Polym
, vol.91
, Issue.1
, pp. 7-13
-
-
Chang, C.1
Peng, N.2
He, M.3
-
11
-
-
0029379691
-
Growth of calcium phosphate on surface-modified cotton
-
Mucalo M, Yokogawa Y, Toriyama M, et al. Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med. 1995;6(10):597–605.
-
(1995)
J Mater Sci Mater Med
, vol.6
, Issue.10
, pp. 597-605
-
-
Mucalo, M.1
Yokogawa, Y.2
Toriyama, M.3
-
12
-
-
1642406765
-
Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite
-
Wang L, Nemoto R, Senna M. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite. J Mater Sci Mater Med. 2004;15(3):261–265.
-
(2004)
J Mater Sci Mater Med
, vol.15
, Issue.3
, pp. 261-265
-
-
Wang, L.1
Nemoto, R.2
Senna, M.3
-
13
-
-
0038417070
-
Preparation of hydroxyapatite-gelatin nanocomposite
-
Chang MC, Ko C-C, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003;24(17):2853–2862. doi:10.1016/s0142-9612(03)00115-7.
-
(2003)
Biomaterials
, vol.24
, Issue.17
, pp. 2853-2862
-
-
Chang, M.C.1
Ko, C.-C.2
Douglas, W.H.3
-
14
-
-
67349264090
-
Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications
-
PubMed PMID: 19246264
-
Grande CJ, Torres FG, Gomez CM, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 2009;5(5):1605–1615. doi:10.1016/j.actbio.2009.01.022. PubMed PMID: 19246264.
-
(2009)
Acta Biomater
, vol.5
, Issue.5
, pp. 1605-1615
-
-
Grande, C.J.1
Torres, F.G.2
Gomez, C.M.3
-
15
-
-
84889245360
-
Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration
-
PubMed PMID: 24191736
-
Jiang H, Zuo Y, Zou Q, et al. Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration. ACS Appl Mater Interfaces. 2013;5(22):12036–12044. doi:10.1021/am4038432. PubMed PMID: 24191736.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, Issue.22
, pp. 12036-12044
-
-
Jiang, H.1
Zuo, Y.2
Zou, Q.3
-
16
-
-
84973638668
-
Biomineralization guided by paper templates
-
PubMed PMID: 27277575; PubMed Central PMCID: PMC4899756
-
Camci-Unal G, Laromaine A, Hong E, et al. Biomineralization guided by paper templates. Sci Rep. 2016;6:27693. doi:10.1038/srep27693. PubMed PMID: 27277575; PubMed Central PMCID: PMC4899756.
-
(2016)
Sci Rep
, vol.6
, pp. 27693
-
-
Camci-Unal, G.1
Laromaine, A.2
Hong, E.3
-
17
-
-
84893648063
-
Recent advances in bacterial cellulose
-
Huang Y, Zhu C, Yang J, et al. Recent advances in bacterial cellulose. Cellulose. 2013;21(1):1–30. doi:10.1007/s10570-013-0088-z.
-
(2013)
Cellulose
, vol.21
, Issue.1
, pp. 1-30
-
-
Huang, Y.1
Zhu, C.2
Yang, J.3
-
18
-
-
84870298635
-
Present status and applications of bacterial cellulose-based materials for skin tissue repair
-
PubMed PMID: 23399174
-
Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym. 2013;92(2):1432–1442. doi:10.1016/j.carbpol.2012.10.071. PubMed PMID: 23399174.
-
(2013)
Carbohydr Polym
, vol.92
, Issue.2
, pp. 1432-1442
-
-
Fu, L.1
Zhang, J.2
Yang, G.3
-
19
-
-
78650258637
-
Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes
-
Barud HS, Souza JL, Santos DB, et al. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym. 2011;83(3):1279–1284. doi:10.1016/j.carbpol.2010.09.049.
-
(2011)
Carbohydr Polym
, vol.83
, Issue.3
, pp. 1279-1284
-
-
Barud, H.S.1
Souza, J.L.2
Santos, D.B.3
-
20
-
-
78650300897
-
Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process
-
Gao Q, Shen X, Lu X. Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym. 2011;83(3):1253–1256. doi:10.1016/j.carbpol.2010.09.029.
-
(2011)
Carbohydr Polym
, vol.83
, Issue.3
, pp. 1253-1256
-
-
Gao, Q.1
Shen, X.2
Lu, X.3
-
21
-
-
33745056782
-
Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites
-
Wan Y, Hong L, Jia S, et al. Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol. 2006;66(11–12):1825–1832. doi:10.1016/j.compscitech.2005.11.027.
-
(2006)
Compos Sci Technol
, vol.66
, Issue.11-12
, pp. 1825-1832
-
-
Wan, Y.1
Hong, L.2
Jia, S.3
-
22
-
-
81555220906
-
Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration
-
PubMed PMID: 21961004; PubMed Central PMCID: PMC3180784
-
Saska S, Barud HS, Gaspar AM, et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater. 2011;2011:175362. doi:10.1155/2011/175362. PubMed PMID: 21961004; PubMed Central PMCID: PMC3180784.
-
(2011)
Int J Biomater
, vol.2011
, pp. 175362
-
-
Saska, S.1
Barud, H.S.2
Gaspar, A.M.3
-
23
-
-
85017583618
-
Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering
-
PubMed PMID: 28575967
-
Ran J, Jiang P, Liu S, et al. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater Sci Eng C. 2017;78:130–140. doi:10.1016/j.msec.2017.04.062. PubMed PMID: 28575967.
-
(2017)
Mater Sci Eng C
, vol.78
, pp. 130-140
-
-
Ran, J.1
Jiang, P.2
Liu, S.3
-
24
-
-
84978906200
-
Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair
-
Hu JX, Ran JB, Chen S, et al. Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair. Biomacromolecules. 2016;17(7):2437–2447.10.1021/acs.biomac.6b00587
-
(2016)
Biomacromolecules
, vol.17
, Issue.7
, pp. 2437-2447
-
-
Hu, J.X.1
Ran, J.B.2
Chen, S.3
-
25
-
-
84928784956
-
Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration
-
PubMed PMID: 26005138
-
Oliveira Barud HG, Barud Hda S, Cavicchioli M, et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015;128:41–51. doi:10.1016/j.carbpol.2015.04.007. PubMed PMID: 26005138.
-
(2015)
Carbohydr Polym
, vol.128
, pp. 41-51
-
-
Oliveira Barud, H.G.1
Barud Hda, S.2
Cavicchioli, M.3
-
26
-
-
84879400527
-
The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study
-
Lee J, Kim J, Lee O, et al. The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139(6):629–635. doi:10.1001/jamaoto.2013.3044.
-
(2013)
JAMA Otolaryngol Head Neck Surg
, vol.139
, Issue.6
, pp. 629-635
-
-
Lee, J.1
Kim, J.2
Lee, O.3
-
27
-
-
85021732022
-
Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration
-
Chen J, Zhuang A, Shao H, et al. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B. 2017;5(20):3640–3650. doi:10.1039/C7TB00485K.
-
(2017)
J Mater Chem B
, vol.5
, Issue.20
, pp. 3640-3650
-
-
Chen, J.1
Zhuang, A.2
Shao, H.3
-
28
-
-
34547432454
-
Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds
-
PubMed PMID: 17092555
-
Hofmann S, Hagenmuller H, Koch AM, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials. 2007;28(6):1152–1162. doi:10.1016/j.biomaterials.2006.10.019. PubMed PMID: 17092555.
-
(2007)
Biomaterials
, vol.28
, Issue.6
, pp. 1152-1162
-
-
Hofmann, S.1
Hagenmuller, H.2
Koch, A.M.3
-
29
-
-
44349099116
-
In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold
-
PubMed PMID: 18462787
-
Fan H, Liu H, Wong EJ, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29(23):3324–3337. doi:10.1016/j.biomaterials.2008.04.012. PubMed PMID: 18462787.
-
(2008)
Biomaterials
, vol.29
, Issue.23
, pp. 3324-3337
-
-
Fan, H.1
Liu, H.2
Wong, E.J.3
-
30
-
-
23244455905
-
In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells
-
PubMed PMID: 15985292
-
Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26(34):7082–7094. doi:10.1016/j.biomaterials.2005.05.022. PubMed PMID: 15985292.
-
(2005)
Biomaterials
, vol.26
, Issue.34
, pp. 7082-7094
-
-
Wang, Y.1
Kim, U.J.2
Blasioli, D.J.3
-
31
-
-
53149113001
-
Gel spinning of silk tubes for tissue engineering
-
PubMed PMID: 18801570; PubMed Central PMCID: PMC3206260
-
Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, et al. Gel spinning of silk tubes for tissue engineering. Biomaterials. 2008;29(35):4650–4657. doi:10.1016/j.biomaterials.2008.08.025. PubMed PMID: 18801570; PubMed Central PMCID: PMC3206260.
-
(2008)
Biomaterials
, vol.29
, Issue.35
, pp. 4650-4657
-
-
Lovett, M.L.1
Cannizzaro, C.M.2
Vunjak-Novakovic, G.3
-
32
-
-
84955566355
-
Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering
-
He J-X, Tan W-L, Han Q-M, et al. Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci. 2016;51(9):4399–4410.10.1007/s10853-016-9752-7
-
(2016)
J Mater Sci
, vol.51
, Issue.9
, pp. 4399-4410
-
-
He, J.-X.1
Tan, W.-L.2
Han, Q.-M.3
-
33
-
-
84971330223
-
A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering
-
PubMed PMID: 27287159
-
Shao W, He J, Han Q, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C. 2016;67:599–610. doi:10.1016/j.msec.2016.05.081. PubMed PMID: 27287159.
-
(2016)
Mater Sci Eng C
, vol.67
, pp. 599-610
-
-
Shao, W.1
He, J.2
Han, Q.3
-
34
-
-
79961136341
-
Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering
-
Cai X, Chen L, Jiang T, et al. Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem. 2011;21(32):12015. doi:10.1039/c1jm11503k.
-
(2011)
J Mater Chem
, vol.21
, Issue.32
, pp. 12015
-
-
Cai, X.1
Chen, L.2
Jiang, T.3
-
35
-
-
84922450849
-
Liquid–liquid equilibrium correlation of aqueous two-phase systems composed of polyethylene glycol and nonionic surfactant
-
Liu Y, Wu Z, Zhao Y. Liquid–liquid equilibrium correlation of aqueous two-phase systems composed of polyethylene glycol and nonionic surfactant. Thermochim Acta. 2015;602:78–86. doi:10.1016/j.tca.2015.01.013.
-
(2015)
Thermochim Acta
, vol.602
, pp. 78-86
-
-
Liu, Y.1
Wu, Z.2
Zhao, Y.3
-
36
-
-
33748904647
-
The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity
-
PubMed PMID: 16963118
-
Woodard JR, Hilldore AJ, Lan SK, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28(1):45–54. doi:10.1016/j.biomaterials.2006.08.021. PubMed PMID: 16963118.
-
(2007)
Biomaterials
, vol.28
, Issue.1
, pp. 45-54
-
-
Woodard, J.R.1
Hilldore, A.J.2
Lan, S.K.3
-
37
-
-
13844269030
-
Polyethylenimine with acid-labile linkages as a biodegradable gene carrier
-
PubMed PMID: 15710512
-
Kim YH, Park JH, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103(1):209–219. doi:10.1016/j.jconrel.2004.11.008. PubMed PMID: 15710512.
-
(2005)
J Control Release
, vol.103
, Issue.1
, pp. 209-219
-
-
Kim, Y.H.1
Park, J.H.2
Lee, M.3
-
38
-
-
85019077408
-
2 with bacterial cellulose-based membranes
-
2 with bacterial cellulose-based membranes. Chem Eng J. 2017;324:83–92. doi:10.1016/j.cej.2017.05.029.
-
(2017)
Chem Eng J
, vol.324
, pp. 83-92
-
-
Hosakun, Y.1
Halász, K.2
Horváth, M.3
-
39
-
-
84877341536
-
Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA
-
PubMed PMID: 23590943
-
Zhou C, Shi Q, Guo W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces. 2013;5(9):3847–3854. doi:10.1021/am4005072. PubMed PMID: 23590943.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, Issue.9
, pp. 3847-3854
-
-
Zhou, C.1
Shi, Q.2
Guo, W.3
-
40
-
-
85021678584
-
Synchrotron FTIR mapping of mineralization in a microfluidic device
-
PubMed PMID: 28387775
-
Li S, Ihli J, Marchant WJ, et al. Synchrotron FTIR mapping of mineralization in a microfluidic device. Lab Chip. 2017;17(9):1616–1624. doi:10.1039/c6lc01393g. PubMed PMID: 28387775.
-
(2017)
Lab Chip
, vol.17
, Issue.9
, pp. 1616-1624
-
-
Li, S.1
Ihli, J.2
Marchant, W.J.3
-
41
-
-
0035426488
-
Crystal orientation of hydroxyapatite induced by ordered carboxyl groups
-
Sato K, Kogure T, Kumagai Y, et al. Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interface Sci. 2001;240(1):133–138.10.1006/jcis.2001.7617
-
(2001)
J Colloid Interface Sci
, vol.240
, Issue.1
, pp. 133-138
-
-
Sato, K.1
Kogure, T.2
Kumagai, Y.3
-
42
-
-
0042025172
-
Hierarchical self-assembly of nano-fibrils in mineralized collagen
-
Zhang W, Liao S, Cui F. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003;15(16):3221–3226.10.1021/cm030080g
-
(2003)
Chem Mater
, vol.15
, Issue.16
, pp. 3221-3226
-
-
Zhang, W.1
Liao, S.2
Cui, F.3
-
43
-
-
84959272629
-
New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: a multi-analytical approach
-
Possenti E, Colombo C, Bersani D, et al. New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: a multi-analytical approach. Microchem J. 2016;127:79–86.10.1016/j.microc.2016.02.008
-
(2016)
Microchem J
, vol.127
, pp. 79-86
-
-
Possenti, E.1
Colombo, C.2
Bersani, D.3
-
44
-
-
85011665813
-
Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite
-
PubMed PMID: 28085214
-
Igeta K, Kuwamura Y, Horiuchi N, et al. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite. J Biomed Mater Res Part A. 2017;105(4):1063–1070. doi:10.1002/jbm.a.35997. PubMed PMID: 28085214.
-
(2017)
J Biomed Mater Res Part A
, vol.105
, Issue.4
, pp. 1063-1070
-
-
Igeta, K.1
Kuwamura, Y.2
Horiuchi, N.3
-
45
-
-
84872745290
-
Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering
-
Jing W, Chunxi Y, Yizao W, et al. Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater. 2013;11(2):173–180. doi:10.1080/1539445x.2011.611204.
-
(2013)
Soft Mater
, vol.11
, Issue.2
, pp. 173-180
-
-
Jing, W.1
Chunxi, Y.2
Yizao, W.3
-
46
-
-
71549150939
-
Novel transparent nanocomposite films based on chitosan and bacterial cellulose
-
Fernandes SCM, Oliveira L, Freire CSR, et al. Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 2009;11(12):2023. doi:10.1039/b919112g.
-
(2009)
Green Chem
, vol.11
, Issue.12
, pp. 2023
-
-
Fernandes, S.C.M.1
Oliveira, L.2
Freire, C.S.R.3
-
47
-
-
10044274310
-
Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin
-
Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–2785.10.1016/j.biomaterials.2004.07.044
-
(2005)
Biomaterials
, vol.26
, Issue.15
, pp. 2775-2785
-
-
Kim, U.J.1
Park, J.2
Kim, H.J.3
-
48
-
-
84923000595
-
Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
-
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–1169.10.1002/adma.201403354
-
(2015)
Adv Mater
, vol.27
, Issue.7
, pp. 1143-1169
-
-
Pina, S.1
Oliveira, J.M.2
Reis, R.L.3
-
49
-
-
31544476834
-
Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process
-
Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules. 2006;7(1):208–214.10.1021/bm0505888
-
(2006)
Biomacromolecules
, vol.7
, Issue.1
, pp. 208-214
-
-
Ayutsede, J.1
Gandhi, M.2
Sukigara, S.3
-
50
-
-
75449103546
-
Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment
-
Zheng Z, Wei Y, Yan S, et al. Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment. J Appl Polym Sci. 2010;116(1):461–467. doi:10.1002/app.31522.
-
(2010)
J Appl Polym Sci
, vol.116
, Issue.1
, pp. 461-467
-
-
Zheng, Z.1
Wei, Y.2
Yan, S.3
-
51
-
-
84879400527
-
The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study
-
Lee JM, Kim JH, Lee OJ, et al. The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139(6):629–635.10.1001/jamaoto.2013.3044
-
(2013)
JAMA Otolaryngol Head Neck Surg
, vol.139
, Issue.6
, pp. 629-635
-
-
Lee, J.M.1
Kim, J.H.2
Lee, O.J.3
-
52
-
-
84899889621
-
Biomimetic porous scaffolds for bone tissue engineering
-
Wu S, Liu X, Yeung KWK, et al. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36. doi:10.1016/j.mser.2014.04.001.
-
(2014)
Mater Sci Eng R Rep
, vol.80
, pp. 1-36
-
-
Wu, S.1
Liu, X.2
Yeung, K.W.K.3
-
53
-
-
84857443833
-
Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery
-
Mohd Amin MCI, Ahmad N, Halib N, et al. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym. 2012;88(2):465–473. doi:10.1016/j.carbpol.2011.12.022.
-
(2012)
Carbohydr Polym
, vol.88
, Issue.2
, pp. 465-473
-
-
Mohd Amin, M.C.I.1
Ahmad, N.2
Halib, N.3
-
54
-
-
58149090918
-
Studies of electrospun regenerated SF/TSF nanofibers
-
Zhang F, Zuo BQ, Zhang HX, et al. Studies of electrospun regenerated SF/TSF nanofibers. Polymer. 2009;50(1):279–285. doi:10.1016/j.polymer.2008.10.053.
-
(2009)
Polymer
, vol.50
, Issue.1
, pp. 279-285
-
-
Zhang, F.1
Zuo, B.Q.2
Zhang, H.X.3
-
55
-
-
84942251607
-
Crystal structure and physical properties of Antheraea yamamai silk fibers: long poly(alanine) sequences are partially in the crystalline region
-
Numata K, Sato R, Yazawa K, et al. Crystal structure and physical properties of Antheraea yamamai silk fibers: long poly(alanine) sequences are partially in the crystalline region. Polymer. 2015;77:87–94. doi:10.1016/j.polymer.2015.09.025.
-
(2015)
Polymer
, vol.77
, pp. 87-94
-
-
Numata, K.1
Sato, R.2
Yazawa, K.3
-
56
-
-
33947165209
-
Thermal characterization of bacterial cellulose–phosphate composite membranes
-
Barud H, Ribeiro C, Crespi M, et al. Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim. 2007;87(3):815–818.10.1007/s10973-006-8170-5
-
(2007)
J Therm Anal Calorim
, vol.87
, Issue.3
, pp. 815-818
-
-
Barud, H.1
Ribeiro, C.2
Crespi, M.3
-
57
-
-
28844475025
-
Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties
-
George J, Ramana KV, Sabapathy SN, et al. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol. 2005;37(4):189–194.10.1016/j.ijbiomac.2005.10.007
-
(2005)
Int J Biol Macromol
, vol.37
, Issue.4
, pp. 189-194
-
-
George, J.1
Ramana, K.V.2
Sabapathy, S.N.3
|