메뉴 건너뛰기




Volumn 29, Issue 2, 2018, Pages 107-124

Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase

Author keywords

Antheraea yamamai silk fibroin; Bacterial cellulose; Bombyx mori silk fibroin; bone tissue engineering; mechanical strength

Indexed keywords

ANIMALS; BIOMECHANICS; BONE; CELL CULTURE; CELLULOSE; COMPRESSION TESTING; DIFFERENTIAL THERMAL ANALYSIS; FRACTURE; FRACTURE TESTING; FRACTURE TOUGHNESS; MECHANICAL PROPERTIES; NANOCOMPOSITES; REINFORCEMENT; STRAIN; STRENGTH OF MATERIALS; TENSILE TESTING; THERMOANALYSIS; THERMOGRAVIMETRIC ANALYSIS; TISSUE; TISSUE ENGINEERING;

EID: 85038376271     PISSN: 09205063     EISSN: 15685624     Source Type: Journal    
DOI: 10.1080/09205063.2017.1403149     Document Type: Article
Times cited : (26)

References (57)
  • 1
    • 85028926011 scopus 로고    scopus 로고
    • Biomimetic approaches for bone tissue engineering
    • PubMed PMID: 27912680; PubMed Central PMCID: PMC5653138
    • Ng J, Spiller K, Bernhard J, et al. Biomimetic approaches for bone tissue engineering. Tissue Eng Part B Rev. 2017;23(5):480–493. doi:10.1089/ten.TEB.2016.0289. PubMed PMID: 27912680; PubMed Central PMCID: PMC5653138.
    • (2017) Tissue Eng Part B Rev , vol.23 , Issue.5 , pp. 480-493
    • Ng, J.1    Spiller, K.2    Bernhard, J.3
  • 2
    • 85011841808 scopus 로고    scopus 로고
    • Artificial bone via bone tissue engineering: current scenario and challenges
    • Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med. 2017;14(1):1–14.10.1007/s13770-016-0001-6
    • (2017) Tissue Eng Regen Med , vol.14 , Issue.1 , pp. 1-14
    • Kashte, S.1    Jaiswal, A.K.2    Kadam, S.3
  • 3
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543.10.1016/S0142-9612(00)00121-6
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 4
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • PubMed PMID: 16504284
    • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431. doi:10.1016/j.biomaterials.2006.01.039. PubMed PMID: 16504284.
    • (2006) Biomaterials , vol.27 , Issue.18 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3
  • 5
    • 84961208052 scopus 로고    scopus 로고
    • Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering
    • Islam MS, Todo M. Effects of sintering temperature on the compressive mechanical properties of collagen/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett. 2016;173:231–234. doi:10.1016/j.matlet.2016.03.028.
    • (2016) Mater Lett , vol.173 , pp. 231-234
    • Islam, M.S.1    Todo, M.2
  • 6
    • 84917690564 scopus 로고    scopus 로고
    • Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering
    • PubMed PMID: 25481441
    • Quinlan E, López-Noriega A, Thompson E, et al. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release. 2015;198:71–79. doi:10.1016/j.jconrel.2014.11.021. PubMed PMID: 25481441.
    • (2015) J Control Release , vol.198 , pp. 71-79
    • Quinlan, E.1    López-Noriega, A.2    Thompson, E.3
  • 7
    • 84920766650 scopus 로고    scopus 로고
    • Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells
    • PubMed PMID: 24909953; PubMed Central PMCID: PMC4380129
    • Villa MM, Wang L, Huang J, et al. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res Part B Appl Biomater. 2015;103(2):243–253. doi:10.1002/jbm.b.33225. PubMed PMID: 24909953; PubMed Central PMCID: PMC4380129.
    • (2015) J Biomed Mater Res Part B Appl Biomater , vol.103 , Issue.2 , pp. 243-253
    • Villa, M.M.1    Wang, L.2    Huang, J.3
  • 8
    • 4344636836 scopus 로고    scopus 로고
    • Silk fibroin regulated mineralization of hydroxyapatite nanocrystals
    • Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J Cryst Growth. 2004;270(1–2):197–202.10.1016/j.jcrysgro.2004.06.007
    • (2004) J Cryst Growth , vol.270 , Issue.1-2 , pp. 197-202
    • Kong, X.D.1    Cui, F.Z.2    Wang, X.M.3
  • 9
    • 0242573190 scopus 로고    scopus 로고
    • Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture
    • Hu Q. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials. 2004;25(5):779–785. doi:10.1016/s0142-9612(03)00582-9.
    • (2004) Biomaterials , vol.25 , Issue.5 , pp. 779-785
    • Hu, Q.1
  • 10
    • 84865306191 scopus 로고    scopus 로고
    • Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials
    • PubMed PMID: 23044099
    • Chang C, Peng N, He M, et al. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym. 2013;91(1):7–13. doi:10.1016/j.carbpol.2012.07.070. PubMed PMID: 23044099.
    • (2013) Carbohydr Polym , vol.91 , Issue.1 , pp. 7-13
    • Chang, C.1    Peng, N.2    He, M.3
  • 11
    • 0029379691 scopus 로고
    • Growth of calcium phosphate on surface-modified cotton
    • Mucalo M, Yokogawa Y, Toriyama M, et al. Growth of calcium phosphate on surface-modified cotton. J Mater Sci Mater Med. 1995;6(10):597–605.
    • (1995) J Mater Sci Mater Med , vol.6 , Issue.10 , pp. 597-605
    • Mucalo, M.1    Yokogawa, Y.2    Toriyama, M.3
  • 12
    • 1642406765 scopus 로고    scopus 로고
    • Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite
    • Wang L, Nemoto R, Senna M. Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite–silk fibroin nanocomposite. J Mater Sci Mater Med. 2004;15(3):261–265.
    • (2004) J Mater Sci Mater Med , vol.15 , Issue.3 , pp. 261-265
    • Wang, L.1    Nemoto, R.2    Senna, M.3
  • 13
    • 0038417070 scopus 로고    scopus 로고
    • Preparation of hydroxyapatite-gelatin nanocomposite
    • Chang MC, Ko C-C, Douglas WH. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials. 2003;24(17):2853–2862. doi:10.1016/s0142-9612(03)00115-7.
    • (2003) Biomaterials , vol.24 , Issue.17 , pp. 2853-2862
    • Chang, M.C.1    Ko, C.-C.2    Douglas, W.H.3
  • 14
    • 67349264090 scopus 로고    scopus 로고
    • Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications
    • PubMed PMID: 19246264
    • Grande CJ, Torres FG, Gomez CM, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 2009;5(5):1605–1615. doi:10.1016/j.actbio.2009.01.022. PubMed PMID: 19246264.
    • (2009) Acta Biomater , vol.5 , Issue.5 , pp. 1605-1615
    • Grande, C.J.1    Torres, F.G.2    Gomez, C.M.3
  • 15
    • 84889245360 scopus 로고    scopus 로고
    • Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration
    • PubMed PMID: 24191736
    • Jiang H, Zuo Y, Zou Q, et al. Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration. ACS Appl Mater Interfaces. 2013;5(22):12036–12044. doi:10.1021/am4038432. PubMed PMID: 24191736.
    • (2013) ACS Appl Mater Interfaces , vol.5 , Issue.22 , pp. 12036-12044
    • Jiang, H.1    Zuo, Y.2    Zou, Q.3
  • 16
    • 84973638668 scopus 로고    scopus 로고
    • Biomineralization guided by paper templates
    • PubMed PMID: 27277575; PubMed Central PMCID: PMC4899756
    • Camci-Unal G, Laromaine A, Hong E, et al. Biomineralization guided by paper templates. Sci Rep. 2016;6:27693. doi:10.1038/srep27693. PubMed PMID: 27277575; PubMed Central PMCID: PMC4899756.
    • (2016) Sci Rep , vol.6 , pp. 27693
    • Camci-Unal, G.1    Laromaine, A.2    Hong, E.3
  • 17
    • 84893648063 scopus 로고    scopus 로고
    • Recent advances in bacterial cellulose
    • Huang Y, Zhu C, Yang J, et al. Recent advances in bacterial cellulose. Cellulose. 2013;21(1):1–30. doi:10.1007/s10570-013-0088-z.
    • (2013) Cellulose , vol.21 , Issue.1 , pp. 1-30
    • Huang, Y.1    Zhu, C.2    Yang, J.3
  • 18
    • 84870298635 scopus 로고    scopus 로고
    • Present status and applications of bacterial cellulose-based materials for skin tissue repair
    • PubMed PMID: 23399174
    • Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym. 2013;92(2):1432–1442. doi:10.1016/j.carbpol.2012.10.071. PubMed PMID: 23399174.
    • (2013) Carbohydr Polym , vol.92 , Issue.2 , pp. 1432-1442
    • Fu, L.1    Zhang, J.2    Yang, G.3
  • 19
    • 78650258637 scopus 로고    scopus 로고
    • Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes
    • Barud HS, Souza JL, Santos DB, et al. Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym. 2011;83(3):1279–1284. doi:10.1016/j.carbpol.2010.09.049.
    • (2011) Carbohydr Polym , vol.83 , Issue.3 , pp. 1279-1284
    • Barud, H.S.1    Souza, J.L.2    Santos, D.B.3
  • 20
    • 78650300897 scopus 로고    scopus 로고
    • Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process
    • Gao Q, Shen X, Lu X. Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym. 2011;83(3):1253–1256. doi:10.1016/j.carbpol.2010.09.029.
    • (2011) Carbohydr Polym , vol.83 , Issue.3 , pp. 1253-1256
    • Gao, Q.1    Shen, X.2    Lu, X.3
  • 21
    • 33745056782 scopus 로고    scopus 로고
    • Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites
    • Wan Y, Hong L, Jia S, et al. Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol. 2006;66(11–12):1825–1832. doi:10.1016/j.compscitech.2005.11.027.
    • (2006) Compos Sci Technol , vol.66 , Issue.11-12 , pp. 1825-1832
    • Wan, Y.1    Hong, L.2    Jia, S.3
  • 22
    • 81555220906 scopus 로고    scopus 로고
    • Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration
    • PubMed PMID: 21961004; PubMed Central PMCID: PMC3180784
    • Saska S, Barud HS, Gaspar AM, et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater. 2011;2011:175362. doi:10.1155/2011/175362. PubMed PMID: 21961004; PubMed Central PMCID: PMC3180784.
    • (2011) Int J Biomater , vol.2011 , pp. 175362
    • Saska, S.1    Barud, H.S.2    Gaspar, A.M.3
  • 23
    • 85017583618 scopus 로고    scopus 로고
    • Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering
    • PubMed PMID: 28575967
    • Ran J, Jiang P, Liu S, et al. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater Sci Eng C. 2017;78:130–140. doi:10.1016/j.msec.2017.04.062. PubMed PMID: 28575967.
    • (2017) Mater Sci Eng C , vol.78 , pp. 130-140
    • Ran, J.1    Jiang, P.2    Liu, S.3
  • 24
    • 84978906200 scopus 로고    scopus 로고
    • Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair
    • Hu JX, Ran JB, Chen S, et al. Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair. Biomacromolecules. 2016;17(7):2437–2447.10.1021/acs.biomac.6b00587
    • (2016) Biomacromolecules , vol.17 , Issue.7 , pp. 2437-2447
    • Hu, J.X.1    Ran, J.B.2    Chen, S.3
  • 25
    • 84928784956 scopus 로고    scopus 로고
    • Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration
    • PubMed PMID: 26005138
    • Oliveira Barud HG, Barud Hda S, Cavicchioli M, et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015;128:41–51. doi:10.1016/j.carbpol.2015.04.007. PubMed PMID: 26005138.
    • (2015) Carbohydr Polym , vol.128 , pp. 41-51
    • Oliveira Barud, H.G.1    Barud Hda, S.2    Cavicchioli, M.3
  • 26
    • 84879400527 scopus 로고    scopus 로고
    • The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study
    • Lee J, Kim J, Lee O, et al. The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139(6):629–635. doi:10.1001/jamaoto.2013.3044.
    • (2013) JAMA Otolaryngol Head Neck Surg , vol.139 , Issue.6 , pp. 629-635
    • Lee, J.1    Kim, J.2    Lee, O.3
  • 27
    • 85021732022 scopus 로고    scopus 로고
    • Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration
    • Chen J, Zhuang A, Shao H, et al. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B. 2017;5(20):3640–3650. doi:10.1039/C7TB00485K.
    • (2017) J Mater Chem B , vol.5 , Issue.20 , pp. 3640-3650
    • Chen, J.1    Zhuang, A.2    Shao, H.3
  • 28
    • 34547432454 scopus 로고    scopus 로고
    • Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds
    • PubMed PMID: 17092555
    • Hofmann S, Hagenmuller H, Koch AM, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials. 2007;28(6):1152–1162. doi:10.1016/j.biomaterials.2006.10.019. PubMed PMID: 17092555.
    • (2007) Biomaterials , vol.28 , Issue.6 , pp. 1152-1162
    • Hofmann, S.1    Hagenmuller, H.2    Koch, A.M.3
  • 29
    • 44349099116 scopus 로고    scopus 로고
    • In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold
    • PubMed PMID: 18462787
    • Fan H, Liu H, Wong EJ, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008;29(23):3324–3337. doi:10.1016/j.biomaterials.2008.04.012. PubMed PMID: 18462787.
    • (2008) Biomaterials , vol.29 , Issue.23 , pp. 3324-3337
    • Fan, H.1    Liu, H.2    Wong, E.J.3
  • 30
    • 23244455905 scopus 로고    scopus 로고
    • In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells
    • PubMed PMID: 15985292
    • Wang Y, Kim UJ, Blasioli DJ, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26(34):7082–7094. doi:10.1016/j.biomaterials.2005.05.022. PubMed PMID: 15985292.
    • (2005) Biomaterials , vol.26 , Issue.34 , pp. 7082-7094
    • Wang, Y.1    Kim, U.J.2    Blasioli, D.J.3
  • 31
    • 53149113001 scopus 로고    scopus 로고
    • Gel spinning of silk tubes for tissue engineering
    • PubMed PMID: 18801570; PubMed Central PMCID: PMC3206260
    • Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, et al. Gel spinning of silk tubes for tissue engineering. Biomaterials. 2008;29(35):4650–4657. doi:10.1016/j.biomaterials.2008.08.025. PubMed PMID: 18801570; PubMed Central PMCID: PMC3206260.
    • (2008) Biomaterials , vol.29 , Issue.35 , pp. 4650-4657
    • Lovett, M.L.1    Cannizzaro, C.M.2    Vunjak-Novakovic, G.3
  • 32
    • 84955566355 scopus 로고    scopus 로고
    • Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering
    • He J-X, Tan W-L, Han Q-M, et al. Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci. 2016;51(9):4399–4410.10.1007/s10853-016-9752-7
    • (2016) J Mater Sci , vol.51 , Issue.9 , pp. 4399-4410
    • He, J.-X.1    Tan, W.-L.2    Han, Q.-M.3
  • 33
    • 84971330223 scopus 로고    scopus 로고
    • A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering
    • PubMed PMID: 27287159
    • Shao W, He J, Han Q, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater Sci Eng C. 2016;67:599–610. doi:10.1016/j.msec.2016.05.081. PubMed PMID: 27287159.
    • (2016) Mater Sci Eng C , vol.67 , pp. 599-610
    • Shao, W.1    He, J.2    Han, Q.3
  • 34
    • 79961136341 scopus 로고    scopus 로고
    • Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering
    • Cai X, Chen L, Jiang T, et al. Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem. 2011;21(32):12015. doi:10.1039/c1jm11503k.
    • (2011) J Mater Chem , vol.21 , Issue.32 , pp. 12015
    • Cai, X.1    Chen, L.2    Jiang, T.3
  • 35
    • 84922450849 scopus 로고    scopus 로고
    • Liquid–liquid equilibrium correlation of aqueous two-phase systems composed of polyethylene glycol and nonionic surfactant
    • Liu Y, Wu Z, Zhao Y. Liquid–liquid equilibrium correlation of aqueous two-phase systems composed of polyethylene glycol and nonionic surfactant. Thermochim Acta. 2015;602:78–86. doi:10.1016/j.tca.2015.01.013.
    • (2015) Thermochim Acta , vol.602 , pp. 78-86
    • Liu, Y.1    Wu, Z.2    Zhao, Y.3
  • 36
    • 33748904647 scopus 로고    scopus 로고
    • The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity
    • PubMed PMID: 16963118
    • Woodard JR, Hilldore AJ, Lan SK, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28(1):45–54. doi:10.1016/j.biomaterials.2006.08.021. PubMed PMID: 16963118.
    • (2007) Biomaterials , vol.28 , Issue.1 , pp. 45-54
    • Woodard, J.R.1    Hilldore, A.J.2    Lan, S.K.3
  • 37
    • 13844269030 scopus 로고    scopus 로고
    • Polyethylenimine with acid-labile linkages as a biodegradable gene carrier
    • PubMed PMID: 15710512
    • Kim YH, Park JH, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103(1):209–219. doi:10.1016/j.jconrel.2004.11.008. PubMed PMID: 15710512.
    • (2005) J Control Release , vol.103 , Issue.1 , pp. 209-219
    • Kim, Y.H.1    Park, J.H.2    Lee, M.3
  • 38
    • 85019077408 scopus 로고    scopus 로고
    • 2 with bacterial cellulose-based membranes
    • 2 with bacterial cellulose-based membranes. Chem Eng J. 2017;324:83–92. doi:10.1016/j.cej.2017.05.029.
    • (2017) Chem Eng J , vol.324 , pp. 83-92
    • Hosakun, Y.1    Halász, K.2    Horváth, M.3
  • 39
    • 84877341536 scopus 로고    scopus 로고
    • Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA
    • PubMed PMID: 23590943
    • Zhou C, Shi Q, Guo W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces. 2013;5(9):3847–3854. doi:10.1021/am4005072. PubMed PMID: 23590943.
    • (2013) ACS Appl Mater Interfaces , vol.5 , Issue.9 , pp. 3847-3854
    • Zhou, C.1    Shi, Q.2    Guo, W.3
  • 40
    • 85021678584 scopus 로고    scopus 로고
    • Synchrotron FTIR mapping of mineralization in a microfluidic device
    • PubMed PMID: 28387775
    • Li S, Ihli J, Marchant WJ, et al. Synchrotron FTIR mapping of mineralization in a microfluidic device. Lab Chip. 2017;17(9):1616–1624. doi:10.1039/c6lc01393g. PubMed PMID: 28387775.
    • (2017) Lab Chip , vol.17 , Issue.9 , pp. 1616-1624
    • Li, S.1    Ihli, J.2    Marchant, W.J.3
  • 41
    • 0035426488 scopus 로고    scopus 로고
    • Crystal orientation of hydroxyapatite induced by ordered carboxyl groups
    • Sato K, Kogure T, Kumagai Y, et al. Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interface Sci. 2001;240(1):133–138.10.1006/jcis.2001.7617
    • (2001) J Colloid Interface Sci , vol.240 , Issue.1 , pp. 133-138
    • Sato, K.1    Kogure, T.2    Kumagai, Y.3
  • 42
    • 0042025172 scopus 로고    scopus 로고
    • Hierarchical self-assembly of nano-fibrils in mineralized collagen
    • Zhang W, Liao S, Cui F. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003;15(16):3221–3226.10.1021/cm030080g
    • (2003) Chem Mater , vol.15 , Issue.16 , pp. 3221-3226
    • Zhang, W.1    Liao, S.2    Cui, F.3
  • 43
    • 84959272629 scopus 로고    scopus 로고
    • New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: a multi-analytical approach
    • Possenti E, Colombo C, Bersani D, et al. New insight on the interaction of diammonium hydrogenphosphate conservation treatment with carbonatic substrates: a multi-analytical approach. Microchem J. 2016;127:79–86.10.1016/j.microc.2016.02.008
    • (2016) Microchem J , vol.127 , pp. 79-86
    • Possenti, E.1    Colombo, C.2    Bersani, D.3
  • 44
    • 85011665813 scopus 로고    scopus 로고
    • Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite
    • PubMed PMID: 28085214
    • Igeta K, Kuwamura Y, Horiuchi N, et al. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite. J Biomed Mater Res Part A. 2017;105(4):1063–1070. doi:10.1002/jbm.a.35997. PubMed PMID: 28085214.
    • (2017) J Biomed Mater Res Part A , vol.105 , Issue.4 , pp. 1063-1070
    • Igeta, K.1    Kuwamura, Y.2    Horiuchi, N.3
  • 45
    • 84872745290 scopus 로고    scopus 로고
    • Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering
    • Jing W, Chunxi Y, Yizao W, et al. Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater. 2013;11(2):173–180. doi:10.1080/1539445x.2011.611204.
    • (2013) Soft Mater , vol.11 , Issue.2 , pp. 173-180
    • Jing, W.1    Chunxi, Y.2    Yizao, W.3
  • 46
    • 71549150939 scopus 로고    scopus 로고
    • Novel transparent nanocomposite films based on chitosan and bacterial cellulose
    • Fernandes SCM, Oliveira L, Freire CSR, et al. Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 2009;11(12):2023. doi:10.1039/b919112g.
    • (2009) Green Chem , vol.11 , Issue.12 , pp. 2023
    • Fernandes, S.C.M.1    Oliveira, L.2    Freire, C.S.R.3
  • 47
    • 10044274310 scopus 로고    scopus 로고
    • Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin
    • Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775–2785.10.1016/j.biomaterials.2004.07.044
    • (2005) Biomaterials , vol.26 , Issue.15 , pp. 2775-2785
    • Kim, U.J.1    Park, J.2    Kim, H.J.3
  • 48
    • 84923000595 scopus 로고    scopus 로고
    • Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
    • Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–1169.10.1002/adma.201403354
    • (2015) Adv Mater , vol.27 , Issue.7 , pp. 1143-1169
    • Pina, S.1    Oliveira, J.M.2    Reis, R.L.3
  • 49
    • 31544476834 scopus 로고    scopus 로고
    • Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process
    • Ayutsede J, Gandhi M, Sukigara S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules. 2006;7(1):208–214.10.1021/bm0505888
    • (2006) Biomacromolecules , vol.7 , Issue.1 , pp. 208-214
    • Ayutsede, J.1    Gandhi, M.2    Sukigara, S.3
  • 50
    • 75449103546 scopus 로고    scopus 로고
    • Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment
    • Zheng Z, Wei Y, Yan S, et al. Preparation of regenerated Antheraea yamamai silk fibroin film and controlled-molecular conformation changes by aqueous ethanol treatment. J Appl Polym Sci. 2010;116(1):461–467. doi:10.1002/app.31522.
    • (2010) J Appl Polym Sci , vol.116 , Issue.1 , pp. 461-467
    • Zheng, Z.1    Wei, Y.2    Yan, S.3
  • 51
    • 84879400527 scopus 로고    scopus 로고
    • The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study
    • Lee JM, Kim JH, Lee OJ, et al. The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch: an experimental study. JAMA Otolaryngol Head Neck Surg. 2013;139(6):629–635.10.1001/jamaoto.2013.3044
    • (2013) JAMA Otolaryngol Head Neck Surg , vol.139 , Issue.6 , pp. 629-635
    • Lee, J.M.1    Kim, J.H.2    Lee, O.J.3
  • 52
    • 84899889621 scopus 로고    scopus 로고
    • Biomimetic porous scaffolds for bone tissue engineering
    • Wu S, Liu X, Yeung KWK, et al. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36. doi:10.1016/j.mser.2014.04.001.
    • (2014) Mater Sci Eng R Rep , vol.80 , pp. 1-36
    • Wu, S.1    Liu, X.2    Yeung, K.W.K.3
  • 53
    • 84857443833 scopus 로고    scopus 로고
    • Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery
    • Mohd Amin MCI, Ahmad N, Halib N, et al. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym. 2012;88(2):465–473. doi:10.1016/j.carbpol.2011.12.022.
    • (2012) Carbohydr Polym , vol.88 , Issue.2 , pp. 465-473
    • Mohd Amin, M.C.I.1    Ahmad, N.2    Halib, N.3
  • 54
    • 58149090918 scopus 로고    scopus 로고
    • Studies of electrospun regenerated SF/TSF nanofibers
    • Zhang F, Zuo BQ, Zhang HX, et al. Studies of electrospun regenerated SF/TSF nanofibers. Polymer. 2009;50(1):279–285. doi:10.1016/j.polymer.2008.10.053.
    • (2009) Polymer , vol.50 , Issue.1 , pp. 279-285
    • Zhang, F.1    Zuo, B.Q.2    Zhang, H.X.3
  • 55
    • 84942251607 scopus 로고    scopus 로고
    • Crystal structure and physical properties of Antheraea yamamai silk fibers: long poly(alanine) sequences are partially in the crystalline region
    • Numata K, Sato R, Yazawa K, et al. Crystal structure and physical properties of Antheraea yamamai silk fibers: long poly(alanine) sequences are partially in the crystalline region. Polymer. 2015;77:87–94. doi:10.1016/j.polymer.2015.09.025.
    • (2015) Polymer , vol.77 , pp. 87-94
    • Numata, K.1    Sato, R.2    Yazawa, K.3
  • 56
    • 33947165209 scopus 로고    scopus 로고
    • Thermal characterization of bacterial cellulose–phosphate composite membranes
    • Barud H, Ribeiro C, Crespi M, et al. Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim. 2007;87(3):815–818.10.1007/s10973-006-8170-5
    • (2007) J Therm Anal Calorim , vol.87 , Issue.3 , pp. 815-818
    • Barud, H.1    Ribeiro, C.2    Crespi, M.3
  • 57
    • 28844475025 scopus 로고    scopus 로고
    • Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties
    • George J, Ramana KV, Sabapathy SN, et al. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol. 2005;37(4):189–194.10.1016/j.ijbiomac.2005.10.007
    • (2005) Int J Biol Macromol , vol.37 , Issue.4 , pp. 189-194
    • George, J.1    Ramana, K.V.2    Sabapathy, S.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.