-
1
-
-
85014915728
-
A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma
-
Hood DC, De Cuir N, Blumberg DM, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2017; 5:4.
-
(2017)
Transl Vis Sci Technol.
, vol.5
, pp. 4
-
-
Hood, D.C.1
De Cuir, N.2
Blumberg, D.M.3
-
2
-
-
84943337628
-
Evaluation of a one-page report to aid in detecting glaucomatous damage
-
Hood DC, Raza AS, De Moraes CG, et al. Evaluation of a one-page report to aid in detecting glaucomatous damage. Transl Vis Sci Technol. 2014;3:8. doi:10.1167/tvst.3.6.8.
-
(2014)
Transl Vis Sci Technol.
, vol.3
, pp. 8
-
-
Hood, D.C.1
Raza, A.S.2
De Moraes, C.G.3
-
3
-
-
84943303335
-
Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps
-
Hood DC, Fortune B, Mavrommatis MA, et al. Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps. Invest Ophthalmol Vis Sci. 2015;56:6208-6216.
-
(2015)
Invest Ophthalmol Vis Sci.
, vol.56
, pp. 6208-6216
-
-
Hood, D.C.1
Fortune, B.2
Mavrommatis, M.A.3
-
6
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211-252.
-
(2015)
Int J Comput Vis.
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
9
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn. 2001;45:5-32.
-
(2001)
Mach Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
10
-
-
0001492549
-
Shape quantization and recognition with randomized trees
-
Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997;9:1545-1588.
-
(1997)
Neural Comput.
, vol.9
, pp. 1545-1588
-
-
Amit, Y.1
Geman, D.2
-
11
-
-
79951480123
-
-
Team R, others R Foundation for Statistical Computing, Vienna, Austria.
-
Team R, others. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2010.
-
(2010)
R: A Language and Environment for Statistical Computing
-
-
-
12
-
-
84905585124
-
On improving the use of OCT imaging for detecting glaucomatous damage
-
Hood DC, Raza AS. On improving the use of OCT imaging for detecting glaucomatous damage. Br J Ophthalmol. 2014;98 (suppl 2):ii1-ii9.
-
(2014)
Br J Ophthalmol.
, vol.98
, pp. ii1-ii9
-
-
Hood, D.C.1
Raza, A.S.2
-
13
-
-
84871889730
-
Progression of patterns (POP): A machine classifier algorithm to identify glaucoma progression in visual fields
-
Goldbaum MH, Lee I, Jang G, et al. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields. Invest Ophthalmol Vis Sci. 2012;53: 6557-6567.
-
(2012)
Invest Ophthalmol Vis Sci.
, vol.53
, pp. 6557-6567
-
-
Goldbaum, M.H.1
Lee, I.2
Jang, G.3
-
14
-
-
85012144233
-
Unsupervised Gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields
-
Yousefi S, Balasubramanian M, Goldbaum MH, et al. Unsupervised gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields. Transl Vis Sci Technol. 2016; 5:2. doi:10.1167/tvst.5.3.2.
-
(2016)
Transl Vis Sci Technol.
, vol.5
, pp. 2
-
-
Yousefi, S.1
Balasubramanian, M.2
Goldbaum, M.H.3
-
15
-
-
84930571314
-
Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
-
Belghith A, Bowd C, Medeiros FA, et al. Learning from healthy and stable eyes: a new approach for detection of glaucomatous progression. Artif Intell Med. 2015;64: 105-115.
-
(2015)
Artif Intell Med.
, vol.64
, pp. 105-115
-
-
Belghith, A.1
Bowd, C.2
Medeiros, F.A.3
-
16
-
-
41949089226
-
Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes
-
Bowd C, Hao J, Tavares IM, et al. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49:945-953.
-
(2008)
Invest Ophthalmol Vis Sci.
, vol.49
, pp. 945-953
-
-
Bowd, C.1
Hao, J.2
Tavares, I.M.3
-
17
-
-
76149109733
-
Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT
-
Bizios D, Heijl A, Hougaard JL, et al. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol (Copenh). 2010;88:44-52.
-
(2010)
Acta Ophthalmol (Copenh).
, vol.88
, pp. 44-52
-
-
Bizios, D.1
Heijl, A.2
Hougaard, J.L.3
-
18
-
-
84883735736
-
Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry
-
Silva FR, Vidotti VG, Cremasco F, et al. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry. Arq Bras Oftalmol. 2013;76:170-174.
-
(2013)
Arq Bras Oftalmol.
, vol.76
, pp. 170-174
-
-
Silva, F.R.1
Vidotti, V.G.2
Cremasco, F.3
-
19
-
-
84893842965
-
Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT
-
Barella KA, Costa VP, Gonçalves Vidotti V, et al. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophthalmol. 2013;2013:789129. doi:10.1155/2013/789129.
-
(2013)
J Ophthalmol.
, vol.2013
, pp. 789129
-
-
Barella, K.A.1
Costa, V.P.2
Gonçalves Vidotti, V.3
-
20
-
-
84922482121
-
Identifying "preperi-metric" glaucoma in standard automated perimetry visual fields
-
Asaoka R, Iwase A, Hirasawa K, et al. Identifying "preperi-metric" glaucoma in standard automated perimetry visual fields. Invest Ophthalmol Vis Sci. 2014;55:7814-7820.
-
(2014)
Invest Ophthalmol Vis Sci.
, vol.55
, pp. 7814-7820
-
-
Asaoka, R.1
Iwase, A.2
Hirasawa, K.3
|