메뉴 건너뛰기




Volumn 26, Issue 12, 2017, Pages 1086-1094

Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects

Author keywords

classification; detection; image processing; machine learning; optical coherence tomography

Indexed keywords

ACCESS TO INFORMATION; ALGORITHM; ARTICLE; CLASSIFIER; CONTROLLED STUDY; DIAGNOSTIC TEST; DIAGNOSTIC TEST ACCURACY STUDY; DISEASE CLASSIFICATION; DISEASE SEVERITY; FALSE NEGATIVE RESULT; FALSE POSITIVE RESULT; GONIOSCOPY; HUMAN; HYBRID DEEP LEARNING METHOD; MACHINE LEARNING; MAJOR CLINICAL STUDY; MEDICAL EXPERT; NERVE CELL NETWORK; OPEN ANGLE GLAUCOMA; OPTICAL COHERENCE TOMOGRAPHY; PRIORITY JOURNAL; RANDOM FOREST; RECEIVER OPERATING CHARACTERISTIC; RETINAL NERVE FIBER LAYER THICKNESS; SINGLE WIDE FIELD OPTICAL COHERENCE TOMOGRAPHY; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; INTRAOCULAR HYPERTENSION; INTRAOCULAR PRESSURE; NERVE FIBER; PATHOLOGY; PATHOPHYSIOLOGY; PHYSIOLOGY; PROCEDURES; REPRODUCIBILITY; RETINA GANGLION CELL; VISUAL FIELD;

EID: 85037633827     PISSN: 10570829     EISSN: 1536481X     Source Type: Journal    
DOI: 10.1097/IJG.0000000000000765     Document Type: Article
Times cited : (205)

References (20)
  • 1
    • 85014915728 scopus 로고    scopus 로고
    • A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma
    • Hood DC, De Cuir N, Blumberg DM, et al. A single wide-field OCT protocol can provide compelling information for the diagnosis of early glaucoma. Transl Vis Sci Technol. 2017; 5:4.
    • (2017) Transl Vis Sci Technol. , vol.5 , pp. 4
    • Hood, D.C.1    De Cuir, N.2    Blumberg, D.M.3
  • 2
    • 84943337628 scopus 로고    scopus 로고
    • Evaluation of a one-page report to aid in detecting glaucomatous damage
    • Hood DC, Raza AS, De Moraes CG, et al. Evaluation of a one-page report to aid in detecting glaucomatous damage. Transl Vis Sci Technol. 2014;3:8. doi:10.1167/tvst.3.6.8.
    • (2014) Transl Vis Sci Technol. , vol.3 , pp. 8
    • Hood, D.C.1    Raza, A.S.2    De Moraes, C.G.3
  • 3
    • 84943303335 scopus 로고    scopus 로고
    • Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps
    • Hood DC, Fortune B, Mavrommatis MA, et al. Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps. Invest Ophthalmol Vis Sci. 2015;56:6208-6216.
    • (2015) Invest Ophthalmol Vis Sci. , vol.56 , pp. 6208-6216
    • Hood, D.C.1    Fortune, B.2    Mavrommatis, M.A.3
  • 6
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211-252.
    • (2015) Int J Comput Vis. , vol.115 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45:5-32.
    • (2001) Mach Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Amit Y, Geman D. Shape quantization and recognition with randomized trees. Neural Comput. 1997;9:1545-1588.
    • (1997) Neural Comput. , vol.9 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 11
    • 79951480123 scopus 로고    scopus 로고
    • Team R, others R Foundation for Statistical Computing, Vienna, Austria.
    • Team R, others. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2010.
    • (2010) R: A Language and Environment for Statistical Computing
  • 12
    • 84905585124 scopus 로고    scopus 로고
    • On improving the use of OCT imaging for detecting glaucomatous damage
    • Hood DC, Raza AS. On improving the use of OCT imaging for detecting glaucomatous damage. Br J Ophthalmol. 2014;98 (suppl 2):ii1-ii9.
    • (2014) Br J Ophthalmol. , vol.98 , pp. ii1-ii9
    • Hood, D.C.1    Raza, A.S.2
  • 13
    • 84871889730 scopus 로고    scopus 로고
    • Progression of patterns (POP): A machine classifier algorithm to identify glaucoma progression in visual fields
    • Goldbaum MH, Lee I, Jang G, et al. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields. Invest Ophthalmol Vis Sci. 2012;53: 6557-6567.
    • (2012) Invest Ophthalmol Vis Sci. , vol.53 , pp. 6557-6567
    • Goldbaum, M.H.1    Lee, I.2    Jang, G.3
  • 14
    • 85012144233 scopus 로고    scopus 로고
    • Unsupervised Gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields
    • Yousefi S, Balasubramanian M, Goldbaum MH, et al. Unsupervised gaussian mixture-model with expectation maximization for detecting glaucomatous progression in standard automated perimetry visual fields. Transl Vis Sci Technol. 2016; 5:2. doi:10.1167/tvst.5.3.2.
    • (2016) Transl Vis Sci Technol. , vol.5 , pp. 2
    • Yousefi, S.1    Balasubramanian, M.2    Goldbaum, M.H.3
  • 15
    • 84930571314 scopus 로고    scopus 로고
    • Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
    • Belghith A, Bowd C, Medeiros FA, et al. Learning from healthy and stable eyes: a new approach for detection of glaucomatous progression. Artif Intell Med. 2015;64: 105-115.
    • (2015) Artif Intell Med. , vol.64 , pp. 105-115
    • Belghith, A.1    Bowd, C.2    Medeiros, F.A.3
  • 16
    • 41949089226 scopus 로고    scopus 로고
    • Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes
    • Bowd C, Hao J, Tavares IM, et al. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49:945-953.
    • (2008) Invest Ophthalmol Vis Sci. , vol.49 , pp. 945-953
    • Bowd, C.1    Hao, J.2    Tavares, I.M.3
  • 17
    • 76149109733 scopus 로고    scopus 로고
    • Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT
    • Bizios D, Heijl A, Hougaard JL, et al. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol (Copenh). 2010;88:44-52.
    • (2010) Acta Ophthalmol (Copenh). , vol.88 , pp. 44-52
    • Bizios, D.1    Heijl, A.2    Hougaard, J.L.3
  • 18
    • 84883735736 scopus 로고    scopus 로고
    • Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry
    • Silva FR, Vidotti VG, Cremasco F, et al. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry. Arq Bras Oftalmol. 2013;76:170-174.
    • (2013) Arq Bras Oftalmol. , vol.76 , pp. 170-174
    • Silva, F.R.1    Vidotti, V.G.2    Cremasco, F.3
  • 19
    • 84893842965 scopus 로고    scopus 로고
    • Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT
    • Barella KA, Costa VP, Gonçalves Vidotti V, et al. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophthalmol. 2013;2013:789129. doi:10.1155/2013/789129.
    • (2013) J Ophthalmol. , vol.2013 , pp. 789129
    • Barella, K.A.1    Costa, V.P.2    Gonçalves Vidotti, V.3
  • 20
    • 84922482121 scopus 로고    scopus 로고
    • Identifying "preperi-metric" glaucoma in standard automated perimetry visual fields
    • Asaoka R, Iwase A, Hirasawa K, et al. Identifying "preperi-metric" glaucoma in standard automated perimetry visual fields. Invest Ophthalmol Vis Sci. 2014;55:7814-7820.
    • (2014) Invest Ophthalmol Vis Sci. , vol.55 , pp. 7814-7820
    • Asaoka, R.1    Iwase, A.2    Hirasawa, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.