-
1
-
-
84890371882
-
An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency
-
International Society for Optics and Photonics
-
Ye M, Cao Z, Yu Z. An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency. In: Proceedings of eighth international symposium on multispectral image processing and pattern recognition; 2013. p. 89210. International Society for Optics and Photonics. doi: 10.1117/12.2031024.
-
(2013)
Proceedings of eighth international symposium on multispectral image processing and pattern recognition
, pp. 89210
-
-
Ye, M.1
Cao, Z.2
Yu, Z.3
-
2
-
-
84941622266
-
Fine-grained maize tassel trait characterization with multi-view representations
-
Lu H, Cao Z, Xiao Y, Fang Z, Zhu Y, Xian K. Fine-grained maize tassel trait characterization with multi-view representations. Comput Electron Agric. 2015;118:143-58. doi: 10.1016/j.compag.2015.08.027.
-
(2015)
Comput Electron Agric
, vol.118
, pp. 143-158
-
-
Lu, H.1
Cao, Z.2
Xiao, Y.3
Fang, Z.4
Zhu, Y.5
Xian, K.6
-
3
-
-
84924917101
-
Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images
-
Guo W, Fukatsu T, Ninomiya S. Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods. 2015;11(1):7. doi: 10.1186/s13007-015-0047-9.
-
(2015)
Plant Methods
, vol.11
, Issue.1
, pp. 7
-
-
Guo, W.1
Fukatsu, T.2
Ninomiya, S.3
-
4
-
-
84922203325
-
Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice
-
Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun. 2014. doi: 10.1038/ncomms6087.
-
(2014)
Nat Commun.
-
-
Yang, W.1
Guo, Z.2
Huang, C.3
Duan, L.4
Chen, G.5
Jiang, N.6
Fang, W.7
Feng, H.8
Xie, W.9
Lian, X.10
-
5
-
-
85016612459
-
TIPS: a system for automated image-based phenotyping of maize tassels
-
Gage JL, Miller ND, Spalding EP, Kaeppler SM, de Leon N. TIPS: a system for automated image-based phenotyping of maize tassels. Plant Methods. 2017;13(1):21. doi: 10.1186/s13007-017-0172-8.
-
(2017)
Plant Methods
, vol.13
, Issue.1
, pp. 21
-
-
Gage, J.L.1
Miller, N.D.2
Spalding, E.P.3
Kaeppler, S.M.4
Leon, N.5
-
6
-
-
84877682482
-
Future scenarios for plant phenotyping
-
Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64:267-91. doi: 10.1146/annurev-arplant-050312-120137.
-
(2013)
Annu Rev Plant Biol
, vol.64
, pp. 267-291
-
-
Fiorani, F.1
Schurr, U.2
-
7
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell. 2010;32(9):1627-45. doi: 10.1109/TPAMI.2009.167.
-
(2010)
IEEE Trans Pattern Anal Mach Intell
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
8
-
-
85032751744
-
Image analysis: the new bottleneck in plant phenotyping [applications corner]
-
Minervini M, Scharr H, Tsaftaris SA. Image analysis: the new bottleneck in plant phenotyping [applications corner]. IEEE Signal Process Mag. 2015;32(4):126-31. doi: 10.1109/MSP.2015.2405111.
-
(2015)
IEEE Signal Process Mag
, vol.32
, Issue.4
, pp. 126-131
-
-
Minervini, M.1
Scharr, H.2
Tsaftaris, S.A.3
-
9
-
-
84892364210
-
Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective
-
Ali S, Nishino K, Manocha D, Shah M, editors. New York: Springer
-
Ali S, Nishino K, Manocha D, Shah M. Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective. In: Ali S, Nishino K, Manocha D, Shah M, editors. Modeling, simulation and visual analysis of crowds, vol. 11. New York: Springer; 2013. doi: 10.1007/978-1-4614-8483-7_1.
-
(2013)
Modeling, simulation and visual analysis of crowds
, vol.11
-
-
Ali, S.1
Nishino, K.2
Manocha, D.3
Shah, M.4
-
10
-
-
85033360900
-
Computer vision problems in plant phenotyping (CVPPP)
-
Accessed 25 Sept 2017
-
Tsaftaris SA, Scharr H (2014) Computer vision problems in plant phenotyping (CVPPP). https://www.plant-phenotyping.org/CVPPP2014. Accessed 25 Sept 2017.
-
(2014)
-
-
Tsaftaris, S.A.1
Scharr, H.2
-
11
-
-
85033360900
-
Computer vision problems in plant phenotyping (CVPPP)
-
Accessed 25 Sept 2017
-
Tsaftaris SA, Scharr H, Pridmore T (2015) Computer vision problems in plant phenotyping (CVPPP). https://www.plant-phenotyping.org/CVPPP2015. Accessed 25 Sept 2017.
-
(2015)
-
-
Tsaftaris, S.A.1
Scharr, H.2
Pridmore, T.3
-
12
-
-
85033360900
-
Computer vision problems in plant phenotyping (CVPPP)
-
Accessed 25 Sept 2017
-
Tsaftaris SA, Scharr H, Pridmore T (2017) Computer vision problems in plant phenotyping (CVPPP). https://www.plant-phenotyping.org/CVPPP2017. Accessed 25 Sept 2017.
-
(2017)
-
-
Tsaftaris, S.A.1
Scharr, H.2
Pridmore, T.3
-
21
-
-
85018513324
-
Deep count: fruit counting based on deep simulated learning
-
Rahnemoonfar M, Sheppard C. Deep count: fruit counting based on deep simulated learning. Sensors. 2017;17(4):905. doi: 10.3390/s17040905.
-
(2017)
Sensors
, vol.17
, Issue.4
, pp. 905
-
-
Rahnemoonfar, M.1
Sheppard, C.2
-
22
-
-
84916619600
-
Crowd counting and profiling: methodology and evaluation
-
New York: Springer
-
Loy CC, Chen K, Gong S, Xiang T. Crowd counting and profiling: methodology and evaluation. In: Modeling, simulation and visual analysis of crowds. New York: Springer; 2013. p. 347-382. doi: 10.1007/978-1-4614-8483-7_14.
-
(2013)
Modeling, simulation and visual analysis of crowds
, pp. 347-382
-
-
Loy, C.C.1
Chen, K.2
Gong, S.3
Xiang, T.4
-
24
-
-
77957965857
-
Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection
-
Li M, Zhang Z, Huang K, Tan T. Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection. In: Proceedings of international conference on pattern recognition; 2008. p. 1-4. doi: 10.1109/icpr.2008.4761705.
-
(2008)
Proceedings of international conference on pattern recognition
, pp. 1-4
-
-
Li, M.1
Zhang, Z.2
Huang, K.3
Tan, T.4
-
25
-
-
84857435937
-
Pedestrian detection: an evaluation of the state of the art
-
Dollar P, Wojek C, Schiele B, Perona P. Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell. 2012;34(4):743-61. doi: 10.1109/TPAMI.2011.155.
-
(2012)
IEEE Trans Pattern Anal Mach Intell
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollar, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
28
-
-
85048704635
-
Count-ception: counting by fully convolutional redundant counting
-
arXiv 2017
-
Cohen JP, Lo HZ, Bengio Y. Count-ception: counting by fully convolutional redundant counting. arXiv 2017.
-
-
-
Cohen, J.P.1
Lo, H.Z.2
Bengio, Y.3
-
29
-
-
84898455547
-
Feature mining for localised crowd counting
-
Chen K, Loy CC, Gong S, Xiang T. Feature mining for localised crowd counting. In: Proceedings of British Machine Vision Conference (BMVC), vol. 1; 2012. p. 3. doi: 10.5244/c.26.21.
-
(2012)
Proceedings of British Machine Vision Conference (BMVC)
, vol.1
, pp. 3
-
-
Chen, K.1
Loy, C.C.2
Gong, S.3
Xiang, T.4
-
30
-
-
84986278309
-
Single-image crowd counting via multi-column convolutional neural network
-
Zhang Y, Zhou D, Chen S, Gao S, Ma Y. Single-image crowd counting via multi-column convolutional neural network. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR); 2016. p. 589-597. doi: 10.1109/cvpr.2016.70.
-
(2016)
Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
, pp. 589-597
-
-
Zhang, Y.1
Zhou, D.2
Chen, S.3
Gao, S.4
Ma, Y.5
-
31
-
-
85025474344
-
A survey of recent advances in cnn-based single image crowd counting and density estimation
-
Sindagi VA, Patel VM. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognit Lett. 2017. doi: 10.1016/j.patrec.2017.07.007.
-
(2017)
Pattern Recognit Lett
-
-
Sindagi, V.A.1
Patel, V.M.2
-
33
-
-
84994304881
-
Toward good practices for fine-grained maize cultivar identification with filter-specific convolutional activations
-
Lu H, Cao Z, Xiao Y, Fang Z, Zhu Y. Toward good practices for fine-grained maize cultivar identification with filter-specific convolutional activations. IEEE Trans Autom Sci Eng. 2016. doi: 10.1109/TASE.2016.2616485.
-
(2016)
IEEE Trans Autom Sci Eng
-
-
Lu, H.1
Cao, Z.2
Xiao, Y.3
Fang, Z.4
Zhu, Y.5
-
34
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
CoRR abs/1409.1556
-
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 2014.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
35
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278-324. doi: 10.1109/5.726791.
-
(1998)
Proc IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
41
-
-
84967113415
-
Region-based colour modelling for joint crop and maize tassel segmentation
-
Lu H, Cao Z, Xiao Y, Li Y, Zhu Y. Region-based colour modelling for joint crop and maize tassel segmentation. Biosyst Eng. 2016;147:139-50. doi: 10.1016/j.biosystemseng.2016.04.007.
-
(2016)
Biosyst Eng
, vol.147
, pp. 139-150
-
-
Lu, H.1
Cao, Z.2
Xiao, Y.3
Li, Y.4
Zhu, Y.5
-
42
-
-
85006803144
-
Counting in dense crowds using deep features
-
Tota K, Idrees H. Counting in dense crowds using deep features. In: CRCV; 2015.
-
(2015)
CRCV
-
-
Tota, K.1
Idrees, H.2
-
43
-
-
85022324600
-
Two-dimensional subspace alignment for convolutional activations adaptation
-
Lu H, Cao Z, Xiao Y, Zhu Y. Two-dimensional subspace alignment for convolutional activations adaptation. Pattern Recognit. 2017;71:320-36. doi: 10.1016/j.patcog.2017.06.010.
-
(2017)
Pattern Recognit
, vol.71
, pp. 320-336
-
-
Lu, H.1
Cao, Z.2
Xiao, Y.3
Zhu, Y.4
|