메뉴 건너뛰기




Volumn 13, Issue 1, 2017, Pages

TasselNet: Counting maize tassels in the wild via local counts regression network

Author keywords

Computer vision; Convolutional neural networks; Deep learning; Maize tassels; Object counting

Indexed keywords


EID: 85033404576     PISSN: None     EISSN: 17464811     Source Type: Journal    
DOI: 10.1186/s13007-017-0224-0     Document Type: Article
Times cited : (231)

References (43)
  • 1
    • 84890371882 scopus 로고    scopus 로고
    • An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency
    • International Society for Optics and Photonics
    • Ye M, Cao Z, Yu Z. An image-based approach for automatic detecting tasseling stage of maize using spatio-temporal saliency. In: Proceedings of eighth international symposium on multispectral image processing and pattern recognition; 2013. p. 89210. International Society for Optics and Photonics. doi: 10.1117/12.2031024.
    • (2013) Proceedings of eighth international symposium on multispectral image processing and pattern recognition , pp. 89210
    • Ye, M.1    Cao, Z.2    Yu, Z.3
  • 2
    • 84941622266 scopus 로고    scopus 로고
    • Fine-grained maize tassel trait characterization with multi-view representations
    • Lu H, Cao Z, Xiao Y, Fang Z, Zhu Y, Xian K. Fine-grained maize tassel trait characterization with multi-view representations. Comput Electron Agric. 2015;118:143-58. doi: 10.1016/j.compag.2015.08.027.
    • (2015) Comput Electron Agric , vol.118 , pp. 143-158
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Fang, Z.4    Zhu, Y.5    Xian, K.6
  • 3
    • 84924917101 scopus 로고    scopus 로고
    • Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images
    • Guo W, Fukatsu T, Ninomiya S. Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images. Plant Methods. 2015;11(1):7. doi: 10.1186/s13007-015-0047-9.
    • (2015) Plant Methods , vol.11 , Issue.1 , pp. 7
    • Guo, W.1    Fukatsu, T.2    Ninomiya, S.3
  • 4
    • 84922203325 scopus 로고    scopus 로고
    • Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice
    • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun. 2014. doi: 10.1038/ncomms6087.
    • (2014) Nat Commun.
    • Yang, W.1    Guo, Z.2    Huang, C.3    Duan, L.4    Chen, G.5    Jiang, N.6    Fang, W.7    Feng, H.8    Xie, W.9    Lian, X.10
  • 5
    • 85016612459 scopus 로고    scopus 로고
    • TIPS: a system for automated image-based phenotyping of maize tassels
    • Gage JL, Miller ND, Spalding EP, Kaeppler SM, de Leon N. TIPS: a system for automated image-based phenotyping of maize tassels. Plant Methods. 2017;13(1):21. doi: 10.1186/s13007-017-0172-8.
    • (2017) Plant Methods , vol.13 , Issue.1 , pp. 21
    • Gage, J.L.1    Miller, N.D.2    Spalding, E.P.3    Kaeppler, S.M.4    Leon, N.5
  • 6
    • 84877682482 scopus 로고    scopus 로고
    • Future scenarios for plant phenotyping
    • Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64:267-91. doi: 10.1146/annurev-arplant-050312-120137.
    • (2013) Annu Rev Plant Biol , vol.64 , pp. 267-291
    • Fiorani, F.1    Schurr, U.2
  • 8
    • 85032751744 scopus 로고    scopus 로고
    • Image analysis: the new bottleneck in plant phenotyping [applications corner]
    • Minervini M, Scharr H, Tsaftaris SA. Image analysis: the new bottleneck in plant phenotyping [applications corner]. IEEE Signal Process Mag. 2015;32(4):126-31. doi: 10.1109/MSP.2015.2405111.
    • (2015) IEEE Signal Process Mag , vol.32 , Issue.4 , pp. 126-131
    • Minervini, M.1    Scharr, H.2    Tsaftaris, S.A.3
  • 9
    • 84892364210 scopus 로고    scopus 로고
    • Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective
    • Ali S, Nishino K, Manocha D, Shah M, editors. New York: Springer
    • Ali S, Nishino K, Manocha D, Shah M. Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective. In: Ali S, Nishino K, Manocha D, Shah M, editors. Modeling, simulation and visual analysis of crowds, vol. 11. New York: Springer; 2013. doi: 10.1007/978-1-4614-8483-7_1.
    • (2013) Modeling, simulation and visual analysis of crowds , vol.11
    • Ali, S.1    Nishino, K.2    Manocha, D.3    Shah, M.4
  • 10
    • 85033360900 scopus 로고    scopus 로고
    • Computer vision problems in plant phenotyping (CVPPP)
    • Accessed 25 Sept 2017
    • Tsaftaris SA, Scharr H (2014) Computer vision problems in plant phenotyping (CVPPP). https://www.plant-phenotyping.org/CVPPP2014. Accessed 25 Sept 2017.
    • (2014)
    • Tsaftaris, S.A.1    Scharr, H.2
  • 11
    • 85033360900 scopus 로고    scopus 로고
    • Computer vision problems in plant phenotyping (CVPPP)
    • Accessed 25 Sept 2017
    • Tsaftaris SA, Scharr H, Pridmore T (2015) Computer vision problems in plant phenotyping (CVPPP). https://www.plant-phenotyping.org/CVPPP2015. Accessed 25 Sept 2017.
    • (2015)
    • Tsaftaris, S.A.1    Scharr, H.2    Pridmore, T.3
  • 12
    • 85033360900 scopus 로고    scopus 로고
    • Computer vision problems in plant phenotyping (CVPPP)
    • Accessed 25 Sept 2017
    • Tsaftaris SA, Scharr H, Pridmore T (2017) Computer vision problems in plant phenotyping (CVPPP). https://www.plant-phenotyping.org/CVPPP2017. Accessed 25 Sept 2017.
    • (2017)
    • Tsaftaris, S.A.1    Scharr, H.2    Pridmore, T.3
  • 16
    • 85006215434 scopus 로고    scopus 로고
    • Microscopy cell counting and detection with fully convolutional regression networks
    • Xie W, Noble JA, Zisserman A. Microscopy cell counting and detection with fully convolutional regression networks. Comput Methods Biomech Biomed Eng Imaging Vis. 2016. doi: 10.1080/21681163.2016.1149104.
    • (2016) Comput Methods Biomech Biomed Eng Imaging Vis
    • Xie, W.1    Noble, J.A.2    Zisserman, A.3
  • 21
    • 85018513324 scopus 로고    scopus 로고
    • Deep count: fruit counting based on deep simulated learning
    • Rahnemoonfar M, Sheppard C. Deep count: fruit counting based on deep simulated learning. Sensors. 2017;17(4):905. doi: 10.3390/s17040905.
    • (2017) Sensors , vol.17 , Issue.4 , pp. 905
    • Rahnemoonfar, M.1    Sheppard, C.2
  • 24
    • 77957965857 scopus 로고    scopus 로고
    • Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection
    • Li M, Zhang Z, Huang K, Tan T. Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection. In: Proceedings of international conference on pattern recognition; 2008. p. 1-4. doi: 10.1109/icpr.2008.4761705.
    • (2008) Proceedings of international conference on pattern recognition , pp. 1-4
    • Li, M.1    Zhang, Z.2    Huang, K.3    Tan, T.4
  • 25
  • 28
    • 85048704635 scopus 로고    scopus 로고
    • Count-ception: counting by fully convolutional redundant counting
    • arXiv 2017
    • Cohen JP, Lo HZ, Bengio Y. Count-ception: counting by fully convolutional redundant counting. arXiv 2017.
    • Cohen, J.P.1    Lo, H.Z.2    Bengio, Y.3
  • 31
    • 85025474344 scopus 로고    scopus 로고
    • A survey of recent advances in cnn-based single image crowd counting and density estimation
    • Sindagi VA, Patel VM. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognit Lett. 2017. doi: 10.1016/j.patrec.2017.07.007.
    • (2017) Pattern Recognit Lett
    • Sindagi, V.A.1    Patel, V.M.2
  • 33
    • 84994304881 scopus 로고    scopus 로고
    • Toward good practices for fine-grained maize cultivar identification with filter-specific convolutional activations
    • Lu H, Cao Z, Xiao Y, Fang Z, Zhu Y. Toward good practices for fine-grained maize cultivar identification with filter-specific convolutional activations. IEEE Trans Autom Sci Eng. 2016. doi: 10.1109/TASE.2016.2616485.
    • (2016) IEEE Trans Autom Sci Eng
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Fang, Z.4    Zhu, Y.5
  • 34
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • CoRR abs/1409.1556
    • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 2014.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 35
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278-324. doi: 10.1109/5.726791.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 41
    • 84967113415 scopus 로고    scopus 로고
    • Region-based colour modelling for joint crop and maize tassel segmentation
    • Lu H, Cao Z, Xiao Y, Li Y, Zhu Y. Region-based colour modelling for joint crop and maize tassel segmentation. Biosyst Eng. 2016;147:139-50. doi: 10.1016/j.biosystemseng.2016.04.007.
    • (2016) Biosyst Eng , vol.147 , pp. 139-150
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Li, Y.4    Zhu, Y.5
  • 42
    • 85006803144 scopus 로고    scopus 로고
    • Counting in dense crowds using deep features
    • Tota K, Idrees H. Counting in dense crowds using deep features. In: CRCV; 2015.
    • (2015) CRCV
    • Tota, K.1    Idrees, H.2
  • 43
    • 85022324600 scopus 로고    scopus 로고
    • Two-dimensional subspace alignment for convolutional activations adaptation
    • Lu H, Cao Z, Xiao Y, Zhu Y. Two-dimensional subspace alignment for convolutional activations adaptation. Pattern Recognit. 2017;71:320-36. doi: 10.1016/j.patcog.2017.06.010.
    • (2017) Pattern Recognit , vol.71 , pp. 320-336
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Zhu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.