메뉴 건너뛰기




Volumn 17, Issue 4, 2017, Pages

Deep count: Fruit counting based on deep simulated learning

Author keywords

Agricultural sensors; Deep learning; Simulated learning; Yield estimation

Indexed keywords

AGRICULTURE; CULTIVATION; DEEP LEARNING; FRUITS; NEURAL NETWORKS; SAMPLING;

EID: 85018513324     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17040905     Document Type: Article
Times cited : (452)

References (46)
  • 2
  • 4
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • Montreal, QC, Canada, 7-12 December 2015; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia
    • Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference, Montreal, QC, Canada, 7-12 December 2015; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia, 2015; pp. 91-99.
    • (2015) Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 8
    • 85018519965 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • Socher, R.; Huval, B.; Bath, B.P.; Manning, C.D.; Ng, A.Y. Convolutional-recursive deep learning for 3d object classification. NIPS 2012, 3, 8.
    • (2012) NIPS , vol.3 , pp. 8
    • Socher, R.1    Huval, B.2    Bath, B.P.3    Manning, C.D.4    Ng, A.Y.5
  • 14
    • 0037489522 scopus 로고    scopus 로고
    • Automated wildlife counts from remotely sensed imagery
    • Laliberte, A.S.; Ripple, W.J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 2003, 31, 362-371.
    • (2003) Wildl. Soc. Bull , vol.31 , pp. 362-371
    • Laliberte, A.S.1    Ripple, W.J.2
  • 15
    • 84886837268 scopus 로고    scopus 로고
    • A new colorimetrically-calibrated automated video-imaging protocol for day-night fish counting at the obsea coastal cabled observatory
    • [CrossRef][PubMed]
    • Del Río, J.; Aguzzi, J.; Costa, C.; Menesatti, P.; Sbragaglia, V.; Nogueras, M.; Sarda, F.; Manuèl, A. A new colorimetrically-calibrated automated video-imaging protocol for day-night fish counting at the obsea coastal cabled observatory. Sensors 2013, 13, 14740-14753.[CrossRef][PubMed]
    • (2013) Sensors , vol.13 , pp. 14740-14753
    • Del Río, J.1    Aguzzi, J.2    Costa, C.3    Menesatti, P.4    Sbragaglia, V.5    Nogueras, M.6    Sarda, F.7    Manuèl, A.8
  • 16
    • 77950335088 scopus 로고    scopus 로고
    • Crowd counting using multiple local features. In Proceedings of the Digital Image Computing
    • Melbourne, Australia, 1-3 December
    • Ryan, D.; Denman, S.; Fookes, C.; Sridharan, S. Crowd counting using multiple local features. In Proceedings of the Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1-3 December 2009; pp. 81-88.
    • (2009) Techniques and Applications , pp. 81-88
    • Ryan, D.1    Denman, S.2    Fookes, C.3    Sridharan, S.4
  • 20
    • 84920090595 scopus 로고    scopus 로고
    • Automated crop yield estimation for apple orchards
    • Springer: Berlin, Germany
    • Wang, Q.; Nuske, S.; Bergerman, M.; Singh, S. Automated crop yield estimation for apple orchards. In Experimental Robotics; Springer: Berlin, Germany, 2013; pp. 745-758.
    • (2013) Experimental Robotics , pp. 745-758
    • Wang, Q.1    Nuske, S.2    Bergerman, M.3    Singh, S.4
  • 21
    • 84978239436 scopus 로고    scopus 로고
    • In-field cotton detection via region-based semantic image segmentation
    • [CrossRef]
    • Li, Y.; Cao, Z.; Lu, H.; Xiao, Y.; Zhu, Y.; Cremers, A.B. In-field cotton detection via region-based semantic image segmentation. Comput. Electron. Agric. 2016, 127, 475-486.[CrossRef]
    • (2016) Comput. Electron. Agric , vol.127 , pp. 475-486
    • Li, Y.1    Cao, Z.2    Lu, H.3    Xiao, Y.4    Zhu, Y.5    Cremers, A.B.6
  • 22
    • 84967113415 scopus 로고    scopus 로고
    • Region-based colour modelling for joint crop and maize tassel segmentation
    • [CrossRef]
    • Lu, H.; Cao, Z.; Xiao, Y.; Li, Y.; Zhu, Y. Region-based colour modelling for joint crop and maize tassel segmentation. Biosyst. Eng. 2016, 147, 139-150.[CrossRef]
    • (2016) Biosyst. Eng , vol.147 , pp. 139-150
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Li, Y.4    Zhu, Y.5
  • 24
    • 84906730793 scopus 로고    scopus 로고
    • Laser detection method for cotton orientation in robotic cotton picking
    • Wang, L.; Liu, S.; Lu, W.; Gu, B.; Zhu, R.; Zhu, H. Laser detection method for cotton orientation in robotic cotton picking. Trans. Chin. Soc. Agric. Eng. 2014, 30, 42-48.
    • (2014) Trans. Chin. Soc. Agric. Eng. , vol.30 , pp. 42-48
    • Wang, L.1    Liu, S.2    Lu, W.3    Gu, B.4    Zhu, R.5    Zhu, H.6
  • 25
    • 84863222915 scopus 로고    scopus 로고
    • Definition of linear color models in the rgb vector color space to detect red peaches in orchard images taken under natural illumination
    • [CrossRef][PubMed]
    • Teixidó, M.; Font, D.; Pallejà, T.; Tresánchez, M.; Nogués, M.; Palacín, J. Definition of linear color models in the rgb vector color space to detect red peaches in orchard images taken under natural illumination. Sensors 2012, 12, 7701-7718.[CrossRef][PubMed]
    • (2012) Sensors , vol.12 , pp. 7701-7718
    • Teixidó, M.1    Font, D.2    Pallejà, T.3    Tresánchez, M.4    Nogués, M.5    Palacín, J.6
  • 26
    • 84874540833 scopus 로고    scopus 로고
    • Research on the segmentation strategy of the cotton images on the natural condition based upon the hsv color-space model
    • Wei, J.D.; Fei, S.M.; Wang, M.L.; Yuan, J.N. Research on the segmentation strategy of the cotton images on the natural condition based upon the hsv color-space model. Cotton Sci. 2008, 20, 34-38.
    • (2008) Cotton Sci. , vol.20 , pp. 34-38
    • Wei, J.D.1    Fei, S.M.2    Wang, M.L.3    Yuan, J.N.4
  • 27
    • 83455229423 scopus 로고    scopus 로고
    • Determination of the number of green apples in rgb images recorded in orchards
    • [CrossRef]
    • Linker, R.; Cohen, O.; Naor, A. Determination of the number of green apples in rgb images recorded in orchards. Comput. Electron. Agric. 2012, 81, 45-57.[CrossRef]
    • (2012) Comput. Electron. Agric , vol.81 , pp. 45-57
    • Linker, R.1    Cohen, O.2    Naor, A.3
  • 31
    • 84982682350 scopus 로고    scopus 로고
    • Deepfruits: A fruit detection system using deep neural networks
    • [CrossRef][PubMed]
    • Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2016, 16, 1222.[CrossRef][PubMed]
    • (2016) Sensors , vol.16 , pp. 1222
    • Sa, I.1    Ge, Z.2    Dayoub, F.3    Upcroft, B.4    Perez, T.5    McCool, C.6
  • 34
    • 84997765936 scopus 로고    scopus 로고
    • Fruit recognition based on convolution neural network
    • Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13-15 August
    • Hou, L.; Wu, Q.; Sun, Q.; Yang, H.; Li, P. Fruit recognition based on convolution neural network. In Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13-15 August 2016; pp. 18-22.
    • (2016) Proceedings of the 12Th International Conference on Natural Computation , pp. 18-22
    • Hou, L.1    Wu, Q.2    Sun, Q.3    Yang, H.4    Li, P.5
  • 35
    • 85039749920 scopus 로고    scopus 로고
    • From the human visual system to the computational models of visual attention
    • Filipe, S.; Alexandre, L.A. From the human visual system to the computational models of visual attention: A survey. Artif. Intell. Rev. 2013, 39, 1-47.
    • (2013) A Survey. Artif. Intell. Rev. , vol.39 , pp. 1-47
    • Filipe, S.1    Alexandre, L.A.2
  • 45
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Aistats 2010, 9, 249-256.
    • (2010) Aistats , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.