-
1
-
-
78149306047
-
3D object recognition with deep belief nets
-
Vancouver, BC, Canada, 7-10 December 2009; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia
-
Nair, V.; Hinton, G.E. 3D object recognition with deep belief nets. In Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference, Vancouver, BC, Canada, 7-10 December 2009; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia, 2009; pp. 1339-1347.
-
(2009)
Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference
, pp. 1339-1347
-
-
Nair, V.1
Hinton, G.E.2
-
2
-
-
84926497888
-
Background prior-based salient object detection via deep reconstruction residual
-
Han, J.; Zhang, D.; Hu, X.; Guo, L.; Ren, J.; Wu, F. Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuit Syst. Video Technol. 2015, 25, 1309-1321.
-
(2015)
IEEE Trans. Circuit Syst. Video Technol.
, vol.25
, pp. 1309-1321
-
-
Han, J.1
Zhang, D.2
Hu, X.3
Guo, L.4
Ren, J.5
Wu, F.6
-
3
-
-
84986274465
-
Deep residual learning for image recognition
-
Washington, DC, USA, 27-30 June
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27-30 June 2016; pp. 770-778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
4
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
Montreal, QC, Canada, 7-12 December 2015; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia
-
Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference, Montreal, QC, Canada, 7-12 December 2015; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia, 2015; pp. 91-99.
-
(2015)
Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
5
-
-
84959233955
-
Segdeepm: Exploiting segmentation and context in deep neural networks for object detection
-
Boston, MA, USA, 7-12 June
-
Zhu, Y.; Urtasun, R.; Salakhutdinov, R.; Fidler, S. Segdeepm: Exploiting segmentation and context in deep neural networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 4703-4711.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4703-4711
-
-
Zhu, Y.1
Urtasun, R.2
Salakhutdinov, R.3
Fidler, S.4
-
6
-
-
84990027431
-
-
arXiv, 2016, arXiv:1602.07261
-
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv, 2016, arXiv:1602.07261.
-
Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.4
-
7
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, NV, USA, 3-6 December 2012; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference, Lake Tahoe, NV, USA, 3-6 December 2012; Neural Information Processing Systems Foundation, Inc.: Ljubljana, Slovenia, 2012; pp. 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems, Proceedings of the Neural Information Processing Systems Conference
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
8
-
-
85018519965
-
Convolutional-recursive deep learning for 3d object classification
-
Socher, R.; Huval, B.; Bath, B.P.; Manning, C.D.; Ng, A.Y. Convolutional-recursive deep learning for 3d object classification. NIPS 2012, 3, 8.
-
(2012)
NIPS
, vol.3
, pp. 8
-
-
Socher, R.1
Huval, B.2
Bath, B.P.3
Manning, C.D.4
Ng, A.Y.5
-
9
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
Providence, RI, USA, 16-21 June
-
Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012; pp. 3642-3649.
-
(2012)
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3642-3649
-
-
Ciregan, D.1
Meier, U.2
Schmidhuber, J.3
-
10
-
-
84951956461
-
Learning to count with deep object features
-
Boston, MA, USA, 7-12 June
-
Seguí, S.; Pujol, O.; Vitria, J. Learning to count with deep object features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 90-96.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 90-96
-
-
Seguí, S.1
Pujol, O.2
Vitria, J.3
-
11
-
-
84959214343
-
-
Boston, MA, USA, 7-12 June
-
Zhang, C.; Li, H.; Wang, X.; Yang, X. Cross-scene crowd counting via deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 833-841.
-
(2015)
Cross-Scene Crowd Counting via Deep Convolutional Neural Networksproceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 833-841
-
-
Zhang, C.1
Li, H.2
Wang, X.3
Yang, X.4
-
12
-
-
84990064144
-
Towards perspective-free object counting with deep learning
-
Amsterdam, The Netherlands, 8-16 October
-
Onoro-Rubio, D.; López-Sastre, R.J. Towards perspective-free object counting with deep learning. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8-16 October 2016; pp. 615-629.
-
(2016)
Proceedings of the European Conference on Computer Vision
, pp. 615-629
-
-
Onoro-Rubio, D.1
López-Sastre, R.J.2
-
13
-
-
85045044675
-
Microscopy cell counting with fully convolutional regression networks
-
Munich, Germany, 5-9 October
-
Xie, W.; Noble, J.A.; Zisserman, A. Microscopy cell counting with fully convolutional regression networks. In Proceedings of the MICCAI 1stWorkshop on Deep Learning in Medical Image Analysis, Munich, Germany, 5-9 October 2015.
-
(2015)
Proceedings of the MICCAI 1Stworkshop on Deep Learning in Medical Image Analysis
-
-
Xie, W.1
Noble, J.A.2
Zisserman, A.3
-
14
-
-
0037489522
-
Automated wildlife counts from remotely sensed imagery
-
Laliberte, A.S.; Ripple, W.J. Automated wildlife counts from remotely sensed imagery. Wildl. Soc. Bull. 2003, 31, 362-371.
-
(2003)
Wildl. Soc. Bull
, vol.31
, pp. 362-371
-
-
Laliberte, A.S.1
Ripple, W.J.2
-
15
-
-
84886837268
-
A new colorimetrically-calibrated automated video-imaging protocol for day-night fish counting at the obsea coastal cabled observatory
-
[CrossRef][PubMed]
-
Del Río, J.; Aguzzi, J.; Costa, C.; Menesatti, P.; Sbragaglia, V.; Nogueras, M.; Sarda, F.; Manuèl, A. A new colorimetrically-calibrated automated video-imaging protocol for day-night fish counting at the obsea coastal cabled observatory. Sensors 2013, 13, 14740-14753.[CrossRef][PubMed]
-
(2013)
Sensors
, vol.13
, pp. 14740-14753
-
-
Del Río, J.1
Aguzzi, J.2
Costa, C.3
Menesatti, P.4
Sbragaglia, V.5
Nogueras, M.6
Sarda, F.7
Manuèl, A.8
-
16
-
-
77950335088
-
Crowd counting using multiple local features. In Proceedings of the Digital Image Computing
-
Melbourne, Australia, 1-3 December
-
Ryan, D.; Denman, S.; Fookes, C.; Sridharan, S. Crowd counting using multiple local features. In Proceedings of the Digital Image Computing: Techniques and Applications, Melbourne, Australia, 1-3 December 2009; pp. 81-88.
-
(2009)
Techniques and Applications
, pp. 81-88
-
-
Ryan, D.1
Denman, S.2
Fookes, C.3
Sridharan, S.4
-
17
-
-
34547343349
-
Real-time vision-based people counting system for the security door
-
Phuket Arcadia, Thailand, 16-19 July
-
Kim, J.-W.; Choi, K.-S.; Choi, B.-D.; Ko, S.-J. Real-time vision-based people counting system for the security door. In Proceedings of the International Technical Conference on Circuits/Systems Computers and Communications, Phuket Arcadia, Thailand, 16-19 July 2002; pp. 1416-1419.
-
(2002)
Proceedings of the International Technical Conference on Circuits/Systems Computers and Communications
, pp. 1416-1419
-
-
Kim, J.-W.1
Choi, K.-S.2
Choi, B.-D.3
Ko, S.-J.4
-
18
-
-
85162384490
-
Learning to count objects in images
-
Vancouver, BC, Canada, 6-11 December
-
Lempitsky, V.; Zisserman, A. Learning to count objects in images. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6-11 December 2010; pp. 1324-1332.
-
(2010)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 1324-1332
-
-
Lempitsky, V.1
Zisserman, A.2
-
19
-
-
84989787009
-
Learning to count leaves in rosette plants
-
Swansea, UK, 7-10 September
-
Giuffrida, M.V.; Minervini, M.; Tsaftaris, S.A. Learning to count leaves in rosette plants. In Proceedings of the BVMC (British Machine Vision Conference), Swansea, UK, 7-10 September 2015.
-
(2015)
Proceedings of the BVMC (British Machine Vision Conference)
-
-
Giuffrida, M.V.1
Minervini, M.2
Tsaftaris, S.A.3
-
20
-
-
84920090595
-
Automated crop yield estimation for apple orchards
-
Springer: Berlin, Germany
-
Wang, Q.; Nuske, S.; Bergerman, M.; Singh, S. Automated crop yield estimation for apple orchards. In Experimental Robotics; Springer: Berlin, Germany, 2013; pp. 745-758.
-
(2013)
Experimental Robotics
, pp. 745-758
-
-
Wang, Q.1
Nuske, S.2
Bergerman, M.3
Singh, S.4
-
21
-
-
84978239436
-
In-field cotton detection via region-based semantic image segmentation
-
[CrossRef]
-
Li, Y.; Cao, Z.; Lu, H.; Xiao, Y.; Zhu, Y.; Cremers, A.B. In-field cotton detection via region-based semantic image segmentation. Comput. Electron. Agric. 2016, 127, 475-486.[CrossRef]
-
(2016)
Comput. Electron. Agric
, vol.127
, pp. 475-486
-
-
Li, Y.1
Cao, Z.2
Lu, H.3
Xiao, Y.4
Zhu, Y.5
Cremers, A.B.6
-
22
-
-
84967113415
-
Region-based colour modelling for joint crop and maize tassel segmentation
-
[CrossRef]
-
Lu, H.; Cao, Z.; Xiao, Y.; Li, Y.; Zhu, Y. Region-based colour modelling for joint crop and maize tassel segmentation. Biosyst. Eng. 2016, 147, 139-150.[CrossRef]
-
(2016)
Biosyst. Eng
, vol.147
, pp. 139-150
-
-
Lu, H.1
Cao, Z.2
Xiao, Y.3
Li, Y.4
Zhu, Y.5
-
23
-
-
85011058225
-
Detecting tomato crops in greenhouses using a vision based method
-
Ragusa Ibla, Italy, 3-6 September
-
Schillaci, G.; Pennisi, A.; Franco, F.; Longo, D. Detecting tomato crops in greenhouses using a vision based method. In Proceedings of the International Conference Ragusa SHWA2012, Ragusa Ibla, Italy, 3-6 September 2012; pp. 252-258.
-
(2012)
Proceedings of the International Conference Ragusa SHWA2012
, pp. 252-258
-
-
Schillaci, G.1
Pennisi, A.2
Franco, F.3
Longo, D.4
-
24
-
-
84906730793
-
Laser detection method for cotton orientation in robotic cotton picking
-
Wang, L.; Liu, S.; Lu, W.; Gu, B.; Zhu, R.; Zhu, H. Laser detection method for cotton orientation in robotic cotton picking. Trans. Chin. Soc. Agric. Eng. 2014, 30, 42-48.
-
(2014)
Trans. Chin. Soc. Agric. Eng.
, vol.30
, pp. 42-48
-
-
Wang, L.1
Liu, S.2
Lu, W.3
Gu, B.4
Zhu, R.5
Zhu, H.6
-
25
-
-
84863222915
-
Definition of linear color models in the rgb vector color space to detect red peaches in orchard images taken under natural illumination
-
[CrossRef][PubMed]
-
Teixidó, M.; Font, D.; Pallejà, T.; Tresánchez, M.; Nogués, M.; Palacín, J. Definition of linear color models in the rgb vector color space to detect red peaches in orchard images taken under natural illumination. Sensors 2012, 12, 7701-7718.[CrossRef][PubMed]
-
(2012)
Sensors
, vol.12
, pp. 7701-7718
-
-
Teixidó, M.1
Font, D.2
Pallejà, T.3
Tresánchez, M.4
Nogués, M.5
Palacín, J.6
-
26
-
-
84874540833
-
Research on the segmentation strategy of the cotton images on the natural condition based upon the hsv color-space model
-
Wei, J.D.; Fei, S.M.; Wang, M.L.; Yuan, J.N. Research on the segmentation strategy of the cotton images on the natural condition based upon the hsv color-space model. Cotton Sci. 2008, 20, 34-38.
-
(2008)
Cotton Sci.
, vol.20
, pp. 34-38
-
-
Wei, J.D.1
Fei, S.M.2
Wang, M.L.3
Yuan, J.N.4
-
27
-
-
83455229423
-
Determination of the number of green apples in rgb images recorded in orchards
-
[CrossRef]
-
Linker, R.; Cohen, O.; Naor, A. Determination of the number of green apples in rgb images recorded in orchards. Comput. Electron. Agric. 2012, 81, 45-57.[CrossRef]
-
(2012)
Comput. Electron. Agric
, vol.81
, pp. 45-57
-
-
Linker, R.1
Cohen, O.2
Naor, A.3
-
28
-
-
84869321994
-
Segmentation of apple fruit from video via background modeling
-
Oregon, Portland, 9-12 July
-
Tabb, A.L.; Peterson, D.L.; Park, J. Segmentation of apple fruit from video via background modeling. In Proceedings of the 2006 ASABE Annual Meeting, Oregon, Portland, 9-12 July 2006.
-
(2006)
Proceedings of the 2006 ASABE Annual Meeting
-
-
Tabb, A.L.1
Peterson, D.L.2
Park, J.3
-
29
-
-
85029054390
-
Convolutional neural networks for counting fish in fisheries surveillance video
-
Swansea, UK, 7-10 September
-
French, G.; Fisher, M.; Mackiewicz, M.; Needle, C. Convolutional neural networks for counting fish in fisheries surveillance video. In Proceedings of the BMVC (British Machine Vision Conference), Swansea, UK, 7-10 September 2015.
-
(2015)
Proceedings of the BMVC (British Machine Vision Conference)
-
-
French, G.1
Fisher, M.2
Mackiewicz, M.3
Needle, C.4
-
31
-
-
84982682350
-
Deepfruits: A fruit detection system using deep neural networks
-
[CrossRef][PubMed]
-
Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. Deepfruits: A fruit detection system using deep neural networks. Sensors 2016, 16, 1222.[CrossRef][PubMed]
-
(2016)
Sensors
, vol.16
, pp. 1222
-
-
Sa, I.1
Ge, Z.2
Dayoub, F.3
Upcroft, B.4
Perez, T.5
McCool, C.6
-
33
-
-
85018486097
-
Very deep residual networks with maxout for plant identification in the wild
-
5-8 September
-
Šulc, M.; Mishkin, D.; Matas, J. Very deep residual networks with maxout for plant identification in the wild. In Proceedings of the CLEF 2016 Conference, Evora, Portugal, 5-8 September 2016.
-
(2016)
Proceedings of the CLEF 2016 Conference, Evora, Portugal
-
-
Šulc, M.1
Mishkin, D.2
Matas, J.3
-
34
-
-
84997765936
-
Fruit recognition based on convolution neural network
-
Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13-15 August
-
Hou, L.; Wu, Q.; Sun, Q.; Yang, H.; Li, P. Fruit recognition based on convolution neural network. In Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13-15 August 2016; pp. 18-22.
-
(2016)
Proceedings of the 12Th International Conference on Natural Computation
, pp. 18-22
-
-
Hou, L.1
Wu, Q.2
Sun, Q.3
Yang, H.4
Li, P.5
-
35
-
-
85039749920
-
From the human visual system to the computational models of visual attention
-
Filipe, S.; Alexandre, L.A. From the human visual system to the computational models of visual attention: A survey. Artif. Intell. Rev. 2013, 39, 1-47.
-
(2013)
A Survey. Artif. Intell. Rev.
, vol.39
, pp. 1-47
-
-
Filipe, S.1
Alexandre, L.A.2
-
36
-
-
85007289096
-
-
arXiv, 2015, arXiv:1506.01195
-
Liu, T.; Fang, S.; Zhao, Y.; Wang, P.; Zhang, J. Implementation of training convolutional neural networks. arXiv, 2015, arXiv:1506.01195 2015.
-
(2015)
Implementation of Training Convolutional Neural Networks
-
-
Liu, T.1
Fang, S.2
Zhao, Y.3
Wang, P.4
Zhang, J.5
-
37
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7-12 June
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
39
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Las Vegas, NV, USA, 26 June-1 July
-
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 2818-2826.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2818-2826
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
40
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
Miami, FL, USA, 20-25 June
-
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255.
-
(2009)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Li, F.-F.6
-
42
-
-
84937813330
-
-
arXiv, 2013, arXiv:1312.4400
-
Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv, 2013, arXiv:1312.4400.
-
Network in Network
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
43
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929-1958.
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
45
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. Aistats 2010, 9, 249-256.
-
(2010)
Aistats
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
46
-
-
84958264664
-
-
Version 2, (accessed on 20 April 2017)
-
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M. Tensorflow: Large-Scale Machine Learning on Heterogeneous Systems, Version 2; 2015. Available online: www.tensorflow.org (accessed on 20 April 2017).
-
(2015)
Tensorflow: Large-Scale Machine Learning on Heterogeneous Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
|