메뉴 건너뛰기




Volumn 12, Issue 11, 2017, Pages

Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature

Author keywords

[No Author keywords available]

Indexed keywords

EXTRACTION; KERNEL METHOD; PROTEIN PROTEIN INTERACTION; SUPPORT VECTOR MACHINE; METABOLISM; PROCEDURES; PROTEIN ANALYSIS; PROTEIN DATABASE;

EID: 85032887880     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0187379     Document Type: Article
Times cited : (27)

References (50)
  • 1
    • 84888103756 scopus 로고    scopus 로고
    • Computational prediction of protein–protein interaction networks: Algorithms and resources
    • Sep 1; PMID: 24396273
    • Zahiri J, Hannon Bozorgmehr J, Masoudi-Nejad A. Computational prediction of protein–protein interaction networks: algorithms and resources. Current genomics. 2013 Sep 1; 14(6):397–414. https://doi.org/10.2174/1389202911314060004 PMID: 24396273
    • (2013) Current Genomics , vol.14 , Issue.6 , pp. 397-414
    • Zahiri, J.1    Hannon Bozorgmehr, J.2    Masoudi-Nejad, A.3
  • 2
    • 12344282809 scopus 로고    scopus 로고
    • Discovering patterns to extract protein–protein interactions from full texts
    • Jul 29; PMID: 15284092
    • Huang M, Zhu X, Hao Y, Payan DG, Qu K, Li M. Discovering patterns to extract protein–protein interactions from full texts. Bioinformatics. 2004 Jul 29; 20(18):3604–12. https://doi.org/10.1093/bioinformatics/bth451 PMID: 15284092
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3604-3612
    • Huang, M.1    Zhu, X.2    Hao, Y.3    Payan, D.G.4    Qu, K.5    Li, M.6
  • 3
    • 33847294345 scopus 로고    scopus 로고
    • RelEx—Relation extraction using dependency parse trees
    • Dec 1; PMID: 17142812
    • Fundel K, Küffner R, Zimmer R. RelEx—Relation extraction using dependency parse trees. Bioinformatics. 2006 Dec 1; 23(3):365–71. https://doi.org/10.1093/bioinformatics/btl616 PMID: 17142812
    • (2006) Bioinformatics , vol.23 , Issue.3 , pp. 365-371
    • Fundel, K.1    Küffner, R.2    Zimmer, R.3
  • 4
    • 84879367043 scopus 로고    scopus 로고
    • PPInterFinder—a mining tool for extracting causal relations on human proteins from literature
    • 2013 Jan 1
    • Raja K, Subramani S, Natarajan J. PPInterFinder—a mining tool for extracting causal relations on human proteins from literature. Database. 2013 Jan 1; 2013.
    • (2013) Database
    • Raja, K.1    Subramani, S.2    Natarajan, J.3
  • 8
    • 85032923304 scopus 로고    scopus 로고
    • PIPE: A protein–protein interaction passage extraction module for BioCreative challenge
    • 2016 Jan 1
    • Chang YC, Chu CH, Su YC, Chen CC, Hsu WL. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge. Database. 2016 Jan 1; 2016.
    • (2016) Database
    • Chang, Y.C.1    Chu, C.H.2    Su, Y.C.3    Chen, C.C.4    Hsu, W.L.5
  • 10
    • 78651423600 scopus 로고    scopus 로고
    • A hybrid approach to extract protein–protein interactions
    • Nov 8; PMID: 21062765
    • Bui QC, Katrenko S, Sloot PM. A hybrid approach to extract protein–protein interactions. Bioinformatics. 2010 Nov 8; 27(2):259–65. https://doi.org/10.1093/bioinformatics/btq620 PMID: 21062765
    • (2010) Bioinformatics , vol.27 , Issue.2 , pp. 259-265
    • Bui, Q.C.1    Katrenko, S.2    Sloot, P.M.3
  • 11
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein–protein interactions using random decision forest framework
    • Oct 18; PMID: 16234318
    • Chen XW, Liu M. Prediction of protein–protein interactions using random decision forest framework. Bioinformatics. 2005 Oct 18; 21(24):4394–400. https://doi.org/10.1093/bioinformatics/bti721 PMID: 16234318
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4394-4400
    • Chen, X.W.1    Liu, M.2
  • 12
    • 33746654139 scopus 로고    scopus 로고
    • Extracting protein-protein interactions from the literature using the hidden vector state model
    • Springer, Berlin, Heidelberg
    • Zhou D, He Y, Kwoh CK. Extracting protein-protein interactions from the literature using the hidden vector state model. In International Conference on Computational Science 2006 May 28 (pp. 718–725). Springer, Berlin, Heidelberg.
    • International Conference on Computational Science 2006 May 28 , pp. 718-725
    • Zhou, D.1    He, Y.2    Kwoh, C.K.3
  • 13
    • 84930038930 scopus 로고    scopus 로고
    • Discovering novel protein–protein interactions by measuring the protein semantic similarity from the biomedical literature
    • Dec
    • Chiang JH, Ju JH. Discovering novel protein–protein interactions by measuring the protein semantic similarity from the biomedical literature. Journal of bioinformatics and computational biology. 2014 Dec; 12(0 6):1442008.
    • (2014) Journal of Bioinformatics and Computational Biology , vol.12 , Issue.6 , pp. 1442008
    • Chiang, J.H.1    Ju, J.H.2
  • 14
    • 84940603095 scopus 로고    scopus 로고
    • Protein–protein interaction identification using a hybrid model
    • Jul 31; PMID: 26054427
    • Niu Y, Wang Y. Protein–protein interaction identification using a hybrid model. Artificial intelligence in medicine. 2015 Jul 31; 64(3):185–93. https://doi.org/10.1016/j.artmed.2015.05.003 PMID: 26054427
    • (2015) Artificial Intelligence in Medicine , vol.64 , Issue.3 , pp. 185-193
    • Niu, Y.1    Wang, Y.2
  • 15
    • 84938358625 scopus 로고    scopus 로고
    • An approach to improve kernel-based protein–protein interaction extraction by learning from large-scale network data
    • Jul 15; PMID: 25864936
    • Li L, Guo R, Jiang Z, Huang D. An approach to improve kernel-based protein–protein interaction extraction by learning from large-scale network data. Methods. 2015 Jul 15; 83:44–50. https://doi.org/10.1016/j.ymeth.2015.03.026 PMID: 25864936
    • (2015) Methods , vol.83 , pp. 44-50
    • Li, L.1    Guo, R.2    Jiang, Z.3    Huang, D.4
  • 17
    • 84978910630 scopus 로고    scopus 로고
    • Protein-protein interaction extraction with feature selection by evaluating contribution levels of groups consisting of related features
    • Jul 25
    • Phan TT, Ohkawa T. Protein-protein interaction extraction with feature selection by evaluating contribution levels of groups consisting of related features. BMC bioinformatics. 2016 Jul 25; 17(7):246.
    • (2016) BMC Bioinformatics , vol.17 , Issue.7 , pp. 246
    • Phan, T.T.1    Ohkawa, T.2
  • 19
    • 0004019973 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science, University of California at Santa Cruz; Jul 8
    • Haussler D. Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz; 1999 Jul 8.
    • (1999) Convolution Kernels on Discrete Structures
    • Haussler, D.1
  • 22
    • 80052410969 scopus 로고    scopus 로고
    • Making Tree Kernels Practical for Natural Language Learning
    • Apr 3
    • Moschitti A. Making Tree Kernels Practical for Natural Language Learning. In Eacl 2006 Apr 3 (Vol. 113, No. 120, p. 24).
    • Eacl 2006 , vol.113 , Issue.120 , pp. 24
    • Moschitti, A.1
  • 24
    • 56649091413 scopus 로고    scopus 로고
    • All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
    • Nov 19
    • Airola A, Pyysalo S, Björne J, Pahikkala T, Ginter F, Salakoski T. All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC bioinformatics. 2008 Nov 19; 9 (11):S2.
    • (2008) BMC Bioinformatics , vol.9 , Issue.11 , pp. S2
    • Airola, A.1    Pyysalo, S.2    Björne, J.3    Pahikkala, T.4    Ginter, F.5    Salakoski, T.6
  • 26
    • 37549050918 scopus 로고    scopus 로고
    • Kernel approaches for genic interaction extraction
    • Nov 14; PMID: 18003645
    • Kim S, Yoon J, Yang J. Kernel approaches for genic interaction extraction. Bioinformatics. 2007 Nov 14; 24(1):118–26. https://doi.org/10.1093/bioinformatics/btm544 PMID: 18003645
    • (2007) Bioinformatics , vol.24 , Issue.1 , pp. 118-126
    • Kim, S.1    Yoon, J.2    Yang, J.3
  • 27
    • 71549135535 scopus 로고    scopus 로고
    • Protein–protein interaction extraction by leveraging multiple kernels and parsers
    • Dec 31; PMID: 19501018
    • Miwa M, Sætre R, Miyao Y, Tsujii JI. Protein–protein interaction extraction by leveraging multiple kernels and parsers. International journal of medical informatics. 2009 Dec 31; 78(12):e39–46. https://doi.org/10.1016/j.ijmedinf.2009.04.010 PMID: 19501018
    • (2009) International Journal of Medical Informatics , vol.78 , Issue.12 , pp. e39-e46
    • Miwa, M.1    Sætre, R.2    Miyao, Y.3    Tsujii, J.I.4
  • 28
    • 77953797578 scopus 로고    scopus 로고
    • Exploiting shallow linguistic information for relation extraction from biomedical literature
    • Giuliano C, Lavelli A, Romano L. Exploiting shallow linguistic information for relation extraction from biomedical literature. In EACL 2006 Apr (Vol. 18, No. 2006, pp. 401–408).
    • EACL 2006 Apr , vol.18 , Issue.2006 , pp. 401-408
    • Giuliano, C.1    Lavelli, A.2    Romano, L.3
  • 29
    • 79954589221 scopus 로고    scopus 로고
    • Multiple kernel learning in protein–protein interaction extraction from biomedical literature
    • Mar 31; PMID: 21208788
    • Yang Z, Tang N, Zhang X, Lin H, Li Y, Yang Z. Multiple kernel learning in protein–protein interaction extraction from biomedical literature. Artificial intelligence in medicine. 2011 Mar 31; 51(3):163–73. https://doi.org/10.1016/j.artmed.2010.12.002 PMID: 21208788
    • (2011) Artificial Intelligence in Medicine , vol.51 , Issue.3 , pp. 163-173
    • Yang, Z.1    Tang, N.2    Zhang, X.3    Lin, H.4    Li, Y.5    Yang, Z.6
  • 30
    • 84898730008 scopus 로고    scopus 로고
    • Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures
    • Mar 12; PMID: 24622773
    • Li L, Zhang P, Zheng T, Zhang H, Jiang Z, Huang D. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures. PloS one. 2014 Mar 12; 9(3): e91898. https://doi.org/10.1371/journal.pone.0091898 PMID: 24622773
    • (2014) Plos One , vol.9 , Issue.3
    • Li, L.1    Zhang, P.2    Zheng, T.3    Zhang, H.4    Jiang, Z.5    Huang, D.6
  • 31
    • 84952344527 scopus 로고    scopus 로고
    • Towards Syntax-aware Compositional Distributional Semantic Models
    • Ferrone L, Zanzotto FM. Towards Syntax-aware Compositional Distributional Semantic Models. In COLING 2014 (pp. 721–730).
    • COLING 2014 , pp. 721-730
    • Ferrone, L.1    Zanzotto, F.M.2
  • 32
    • 79959747217 scopus 로고    scopus 로고
    • accessed 2 February 2012
    • Baldridge J. The opennlp project. 2005. URL: http://opennlpapacheorg/indexhtml (accessed 2 February 2012). 2014.
    • (2005) The Opennlp Project
    • Baldridge, J.1
  • 36
    • 4043082208 scopus 로고    scopus 로고
    • Head-driven statistical models for natural language parsing
    • Dec
    • Collins M. Head-driven statistical models for natural language parsing. Computational linguistics. 2003 Dec; 29(4):589–637.
    • (2003) Computational Linguistics , vol.29 , Issue.4 , pp. 589-637
    • Collins, M.1
  • 38
    • 85014869605 scopus 로고    scopus 로고
    • IRSpot-EL: Identify recombination spots with an ensemble learning approach
    • Aug 16; PMID: 27531102
    • Liu B, Wang S, Long R, Chou KC. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics. 2016 Aug 16; 33(1):35–41. https://doi.org/10.1093/bioinformatics/btw539PMID: 27531102
    • (2016) Bioinformatics , vol.33 , Issue.1 , pp. 35-41
    • Liu, B.1    Wang, S.2    Long, R.3    Chou, K.C.4
  • 39
    • 84983353017 scopus 로고    scopus 로고
    • IDHS-EL: Identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework
    • Apr 8; PMID: 27153623
    • Liu B, Long R, Chou KC. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics. 2016 Apr 8; 32(16):2411–8. https://doi.org/10.1093/bioinformatics/btw186 PMID: 27153623
    • (2016) Bioinformatics , vol.32 , Issue.16 , pp. 2411-2418
    • Liu, B.1    Long, R.2    Chou, K.C.3
  • 40
    • 85020746370 scopus 로고    scopus 로고
    • 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function
    • Jun 16; PMID: 28624202
    • Liu B, Yang F, Chou KC. 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. Molecular Therapy-Nucleic Acids. 2017 Jun 16; 7:267–77. https://doi.org/10.1016/j.omtn.2017.04.008 PMID: 28624202
    • (2017) Molecular Therapy-nucleic Acids , vol.7 , pp. 267-277
    • Liu, B.1    Yang, F.2    Chou, K.C.3
  • 42
    • 16244423656 scopus 로고    scopus 로고
    • Comparative experiments on learning information extractors for proteins and their interactions
    • Feb 28; PMID: 15811782
    • Bunescu R, Ge R, Kate RJ, Marcotte EM, Mooney RJ, Ramani AK, Wong YW. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine. 2005 Feb 28; 33(2):139–55. https://doi.org/10.1016/j.artmed.2004.07.016 PMID: 15811782
    • (2005) Artificial Intelligence in Medicine , vol.33 , Issue.2 , pp. 139-155
    • Bunescu, R.1    Ge, R.2    Kate, R.J.3    Marcotte, E.M.4    Mooney, R.J.5    Ramani, A.K.6    Wong, Y.W.7
  • 47
    • 84879903816 scopus 로고    scopus 로고
    • Syntactic features for protein-protein interaction extraction
    • Dec
    • Sætre R, Sagae K, Tsujii Jun’ichi. Syntactic features for protein-protein interaction extraction. LBM (Short Papers). 2007 Dec; 319.
    • (2007) LBM (short Papers) , vol.319
    • Sætre, R.1    Sagae, K.2    Jun’ichi, T.3
  • 49
    • 59549091756 scopus 로고    scopus 로고
    • Evaluating contributions of natural language parsers to protein–protein interaction extraction
    • Dec 9; PMID: 19073593
    • Miyao Y, Sagae K, Sætre R, Matsuzaki T, Tsujii JI. Evaluating contributions of natural language parsers to protein–protein interaction extraction. Bioinformatics. 2008 Dec 9; 25(3):394–400. https://doi.org/10.1093/bioinformatics/btn631 PMID: 19073593
    • (2008) Bioinformatics , vol.25 , Issue.3 , pp. 394-400
    • Miyao, Y.1    Sagae, K.2    Sætre, R.3    Matsuzaki, T.4    Tsujii, J.I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.