메뉴 건너뛰기




Volumn 64, Issue 3, 2015, Pages 185-193

Protein-protein interaction identification using a hybrid model

Author keywords

Biomedical text mining; Protein protein interaction; Relational similarity model; Word similarity model

Indexed keywords

DATA MINING; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84940603095     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2015.05.003     Document Type: Article
Times cited : (4)

References (49)
  • 2
    • 0037245913 scopus 로고    scopus 로고
    • Bind: the biomolecular interaction network database
    • Bader G.D., Betel D., Hogue C.W. Bind: the biomolecular interaction network database. Nucleic Acids Res 2003, 31(1):248-250.
    • (2003) Nucleic Acids Res , vol.31 , Issue.1 , pp. 248-250
    • Bader, G.D.1    Betel, D.2    Hogue, C.W.3
  • 7
    • 51049088875 scopus 로고    scopus 로고
    • Overview of the protein-protein interaction annotation extraction task of biocreative II
    • Krallinger M., Leitner F., Rodriguez-Penagos C., Valencia A. Overview of the protein-protein interaction annotation extraction task of biocreative II. Genome Biol 2008, 9:S4.
    • (2008) Genome Biol , vol.9 , pp. S4
    • Krallinger, M.1    Leitner, F.2    Rodriguez-Penagos, C.3    Valencia, A.4
  • 9
    • 0043268863 scopus 로고    scopus 로고
    • Computer-assisted generation of a protein-interaction database for nuclear receptors
    • Albert S., Gaudan S., Knigge H., Raetsch A., Delgado A., Huhse B., et al. Computer-assisted generation of a protein-interaction database for nuclear receptors. Mol Endocrinol 2003, 17(8):1555-1567.
    • (2003) Mol Endocrinol , vol.17 , Issue.8 , pp. 1555-1567
    • Albert, S.1    Gaudan, S.2    Knigge, H.3    Raetsch, A.4    Delgado, A.5    Huhse, B.6
  • 10
    • 33747867029 scopus 로고    scopus 로고
    • PDQ Wizard: automated prioritization and characterization of gene and protein lists using biomedical literature
    • Grimes G., Wen T., Mewissen M., Baxter R.M., Moodie S., Beattie J., et al. PDQ Wizard: automated prioritization and characterization of gene and protein lists using biomedical literature. Bioinformatics 2006, 22(16):2055-2057.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 2055-2057
    • Grimes, G.1    Wen, T.2    Mewissen, M.3    Baxter, R.M.4    Moodie, S.5    Beattie, J.6
  • 11
    • 16244423656 scopus 로고    scopus 로고
    • Comparative experiments on learning information extractors for proteins and their interactions
    • Bunescu R., Ge R., Kate R.J., Marcotte E.M., Mooney R.J., Ramani A.K., et al. Comparative experiments on learning information extractors for proteins and their interactions. Artif Intell Med 2005, 33(2):139-155.
    • (2005) Artif Intell Med , vol.33 , Issue.2 , pp. 139-155
    • Bunescu, R.1    Ge, R.2    Kate, R.J.3    Marcotte, E.M.4    Mooney, R.J.5    Ramani, A.K.6
  • 12
    • 25144508650 scopus 로고    scopus 로고
    • Discovering patterns to extract protein-protein interactions from the literature: Part II
    • Hao Y., Zhu X., Huang M., Li M. Discovering patterns to extract protein-protein interactions from the literature: Part II. Bioinformatics 2005, 21(15):3294-3300.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3294-3300
    • Hao, Y.1    Zhu, X.2    Huang, M.3    Li, M.4
  • 13
    • 33747892781 scopus 로고    scopus 로고
    • Finding the evidence for protein-protein interactions from PubMed abstracts
    • Jang H., Lim J., Lim J.-H., Park S.-J., Lee K.-C., Park S.-H. Finding the evidence for protein-protein interactions from PubMed abstracts. Bioinformatics 2006, 22(14):e220-e226.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. e220-e226
    • Jang, H.1    Lim, J.2    Lim, J.-H.3    Park, S.-J.4    Lee, K.-C.5    Park, S.-H.6
  • 14
  • 17
    • 33751111173 scopus 로고    scopus 로고
    • Text mining and its potential applications in systems biology
    • Ananiadou S., Kell D.B., Tsujii J.-I. Text mining and its potential applications in systems biology. Trends Biotechnol 2006, 24(12):571-579.
    • (2006) Trends Biotechnol , vol.24 , Issue.12 , pp. 571-579
    • Ananiadou, S.1    Kell, D.B.2    Tsujii, J.-I.3
  • 18
    • 68649115793 scopus 로고    scopus 로고
    • A realistic assessment of methods for extracting gene/protein interactions from free text
    • Kabiljo R., Clegg A.B., Shepherd A.J. A realistic assessment of methods for extracting gene/protein interactions from free text. BMC Bioinform 2009, 10(1):233.
    • (2009) BMC Bioinform , vol.10 , Issue.1 , pp. 233
    • Kabiljo, R.1    Clegg, A.B.2    Shepherd, A.J.3
  • 20
    • 33747848888 scopus 로고    scopus 로고
    • Extracting protein-protein interaction information from biomedical text with SVM
    • Mitsumori T., Murata M., Fukuda Y., Kouichi D., Hirohumi D. Extracting protein-protein interaction information from biomedical text with SVM. IEICE Trans Inf Syst 2006, 89(8):2464-2466.
    • (2006) IEICE Trans Inf Syst , vol.89 , Issue.8 , pp. 2464-2466
    • Mitsumori, T.1    Murata, M.2    Fukuda, Y.3    Kouichi, D.4    Hirohumi, D.5
  • 22
    • 75249101080 scopus 로고    scopus 로고
    • Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D
    • Niu Y., Otasek D., Jurisica I. Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D. Bioinformatics 2010, 26(1):111-119.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 111-119
    • Niu, Y.1    Otasek, D.2    Jurisica, I.3
  • 23
    • 78651423600 scopus 로고    scopus 로고
    • A hybrid approach to extract protein-protein interactions
    • Bui Q.-C., Katrenko S., Sloot P.M. A hybrid approach to extract protein-protein interactions. Bioinformatics 2011, 27(2):259-265.
    • (2011) Bioinformatics , vol.27 , Issue.2 , pp. 259-265
    • Bui, Q.-C.1    Katrenko, S.2    Sloot, P.M.3
  • 25
    • 71549135535 scopus 로고    scopus 로고
    • Protein-protein interaction extraction by leveraging multiple kernels and parsers
    • Miwa M., Sætre R., Miyao Y., Tsujii J. Protein-protein interaction extraction by leveraging multiple kernels and parsers. Int J Med Inf 2009, 78(12):e39-e46.
    • (2009) Int J Med Inf , vol.78 , Issue.12 , pp. e39-e46
    • Miwa, M.1    Sætre, R.2    Miyao, Y.3    Tsujii, J.4
  • 26
    • 77951201715 scopus 로고    scopus 로고
    • Walk-weighted subsequence kernels for protein-protein interaction extraction
    • Kim S., Yoon J., Yang J., Park S. Walk-weighted subsequence kernels for protein-protein interaction extraction. BMC Bioinform 2010, 11(1):107.
    • (2010) BMC Bioinform , vol.11 , Issue.1 , pp. 107
    • Kim, S.1    Yoon, J.2    Yang, J.3    Park, S.4
  • 28
    • 84855922688 scopus 로고    scopus 로고
    • Neighborhood hash graph kernel for protein-protein interaction extraction
    • Zhang Y., Lin H., Yang Z., Li Y. Neighborhood hash graph kernel for protein-protein interaction extraction. J Biomed Inform 2011, 44(6):1086-1092.
    • (2011) J Biomed Inform , vol.44 , Issue.6 , pp. 1086-1092
    • Zhang, Y.1    Lin, H.2    Yang, Z.3    Li, Y.4
  • 29
    • 84861905274 scopus 로고    scopus 로고
    • Tree kernel-based protein-protein interaction extraction from biomedical literature
    • Qian L., Zhou G. Tree kernel-based protein-protein interaction extraction from biomedical literature. J Biomed Inform 2012, 45(3):535-543.
    • (2012) J Biomed Inform , vol.45 , Issue.3 , pp. 535-543
    • Qian, L.1    Zhou, G.2
  • 30
    • 84894263238 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction with pairwise kernel support vector machine
    • Zhang S.-W., Hao L.-Y., Zhang T.-H. Prediction of protein-protein interaction with pairwise kernel support vector machine. Int J Mol Sci 2014, 15(2):3220-3233.
    • (2014) Int J Mol Sci , vol.15 , Issue.2 , pp. 3220-3233
    • Zhang, S.-W.1    Hao, L.-Y.2    Zhang, T.-H.3
  • 31
    • 84976456782 scopus 로고    scopus 로고
    • Protein-protein interaction extraction based on convex combination kernel function
    • Chen P., Guo J., Yu Z., Wei S., Zhou F., Yan X. Protein-protein interaction extraction based on convex combination kernel function. J Comput Commun 2013, 1:9.
    • (2013) J Comput Commun , vol.1 , pp. 9
    • Chen, P.1    Guo, J.2    Yu, Z.3    Wei, S.4    Zhou, F.5    Yan, X.6
  • 32
    • 12344282809 scopus 로고    scopus 로고
    • Discovering patterns to extract protein-protein interactions from full texts
    • Huang M., Zhu X., Hao Y., Payan D.G., Qu K., Li M. Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics 2004, 20(18):3604-3612.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3604-3612
    • Huang, M.1    Zhu, X.2    Hao, Y.3    Payan, D.G.4    Qu, K.5    Li, M.6
  • 33
    • 1042269463 scopus 로고    scopus 로고
    • Shared relationship analysis: ranking set cohesion and commonalities within a literature-derived relationship network
    • Wren J.D., Garner H.R. Shared relationship analysis: ranking set cohesion and commonalities within a literature-derived relationship network. Bioinformatics 2004, 20(2):191-198.
    • (2004) Bioinformatics , vol.20 , Issue.2 , pp. 191-198
    • Wren, J.D.1    Garner, H.R.2
  • 34
    • 0002587010 scopus 로고
    • Similarity involving attributes and relations: judgments of similarity and difference are not inverses
    • Medin D.L., Goldstone R.L., Gentner D. Similarity involving attributes and relations: judgments of similarity and difference are not inverses. Psychol Sci 1990, 1(1):64-69.
    • (1990) Psychol Sci , vol.1 , Issue.1 , pp. 64-69
    • Medin, D.L.1    Goldstone, R.L.2    Gentner, D.3
  • 35
    • 33748661515 scopus 로고    scopus 로고
    • Similarity of semantic relations
    • Turney P.D. Similarity of semantic relations. Comput Linguist 2006, 32(3):379-416.
    • (2006) Comput Linguist , vol.32 , Issue.3 , pp. 379-416
    • Turney, P.D.1
  • 36
    • 84859913003 scopus 로고    scopus 로고
    • Solving relational similarity problems using the web as a corpus.
    • Morgan Kaufmann Publishers/ACL, Stroudsburg, PA, K. McKeown, J.D. Moore, S. Teufel, J. Allan, S. Furui (Eds.)
    • Nakov P., Hearst M.A. Solving relational similarity problems using the web as a corpus. Proceedings of the 46th annual meeting of the association for computational linguistics 2008, 452-460. Morgan Kaufmann Publishers/ACL, Stroudsburg, PA. K. McKeown, J.D. Moore, S. Teufel, J. Allan, S. Furui (Eds.).
    • (2008) Proceedings of the 46th annual meeting of the association for computational linguistics , pp. 452-460
    • Nakov, P.1    Hearst, M.A.2
  • 37
    • 77954630948 scopus 로고    scopus 로고
    • Measuring the similarity between implicit semantic relations from the web
    • ACM Press, New York, J. Quemada, G. León, Y.S. Maarek, W. Nejdl (Eds.)
    • Bollegala D.T., Matsuo Y., Ishizuka M. Measuring the similarity between implicit semantic relations from the web. Proceedings of the 18th international conference on world wide web 2009, 651-660. ACM Press, New York. J. Quemada, G. León, Y.S. Maarek, W. Nejdl (Eds.).
    • (2009) Proceedings of the 18th international conference on world wide web , pp. 651-660
    • Bollegala, D.T.1    Matsuo, Y.2    Ishizuka, M.3
  • 38
    • 79951672965 scopus 로고    scopus 로고
    • Humans, semantic services and similarity: a user study of semantic web services matching and composition
    • Toch E., Reinhartz-Berger I., Dori D. Humans, semantic services and similarity: a user study of semantic web services matching and composition. Web Semant: Sci Serv Agents World Wide Web 2011, 9(1):16-28.
    • (2011) Web Semant: Sci Serv Agents World Wide Web , vol.9 , Issue.1 , pp. 16-28
    • Toch, E.1    Reinhartz-Berger, I.2    Dori, D.3
  • 39
    • 84940586037 scopus 로고    scopus 로고
    • [accessed May 2011], OL
    • PubMed, Eutilities 2010, [accessed May 2011], OL. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/.
    • (2010) PubMed, Eutilities
  • 40
    • 84940586402 scopus 로고    scopus 로고
    • [accessed May 2011], OL
    • U.of Illinois at Urbana Champaign Sentence segmentation tool 2011, [accessed May 2011], OL. http://cogcomp.cs.illinois.edu/page/tools_view/2.
    • (2011) Sentence segmentation tool
  • 43
    • 84948177273 scopus 로고    scopus 로고
    • Mining the web for synonyms: PMI-IR versus LSA on TOEFL
    • Springer, New York, L.D. Raedt, P.A. Flach (Eds.)
    • Turney P. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. Proceedings of the 12th European conference on machine learning 2001, 491-502. Springer, New York. L.D. Raedt, P.A. Flach (Eds.).
    • (2001) Proceedings of the 12th European conference on machine learning , pp. 491-502
    • Turney, P.1
  • 44
    • 84940612645 scopus 로고    scopus 로고
    • [accessed December 2012], OL
    • A.S.Foundation Apache OpenNLP 1.5.2-incubating 2010, [accessed December 2012], OL. http://opennlp.apache.org/index.html.
    • (2010) Apache OpenNLP 1.5.2-incubating
  • 46
    • 84865971332 scopus 로고    scopus 로고
    • Relation mining experiments in the pharmacogenomics domain
    • Rinaldi F., Schneider G., Clematide S. Relation mining experiments in the pharmacogenomics domain. J Biomed Inform 2012, 45(5):851-861.
    • (2012) J Biomed Inform , vol.45 , Issue.5 , pp. 851-861
    • Rinaldi, F.1    Schneider, G.2    Clematide, S.3
  • 47
    • 84887342400 scopus 로고    scopus 로고
    • Ranking relations between diseases drugs and genes for a curation task
    • Clematide S., Rinaldi F. Ranking relations between diseases drugs and genes for a curation task. J Biomed Semant 2012, 3(Suppl. 3):S5.
    • (2012) J Biomed Semant , vol.3 , pp. S5
    • Clematide, S.1    Rinaldi, F.2
  • 49
    • 84902547630 scopus 로고    scopus 로고
    • An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods
    • Valentini G., Paccanaro A., Caniza H., Romero A.E., Re M. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods. Artif Intell Med 2014, 61(2):63-78.
    • (2014) Artif Intell Med , vol.61 , Issue.2 , pp. 63-78
    • Valentini, G.1    Paccanaro, A.2    Caniza, H.3    Romero, A.E.4    Re, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.