메뉴 건너뛰기




Volumn 83, Issue 22, 2017, Pages

High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology

Author keywords

Alanine production; Glucose consumption rate; Growth rate; Industrial biotechnology; Productivity; Vibrio natriegens

Indexed keywords

AMINO ACIDS; BIOTECHNOLOGY; CULTIVATION; FERMENTATION; GLUCOSE; GROWTH RATE; INDUSTRIAL MICROBIOLOGY; PROCESS CONTROL; PRODUCTIVITY;

EID: 85032684969     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.01614-17     Document Type: Article
Times cited : (111)

References (45)
  • 1
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos G. 2007. Challenges in engineering microbes for biofuels production. Science 315:801-804. https://doi.org/10.1126/science.1139612
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 2
    • 0033797405 scopus 로고    scopus 로고
    • Improvement of microbial strains and fermentation processes
    • Parekh S, Vinci VA, Strobel RJ. 2000. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287-301. https://doi.org/10.1007/s002530000403
    • (2000) Appl Microbiol Biotechnol , vol.54 , pp. 287-301
    • Parekh, S.1    Vinci, V.A.2    Strobel, R.J.3
  • 3
    • 84943604629 scopus 로고    scopus 로고
    • Systems strategies for developing industrial microbial strains
    • Lee SY, Kim HU. 2015. Systems strategies for developing industrial microbial strains. Nat Biotechnol 33:1061-1072. https://doi.org/10.1038/ nbt.3365
    • (2015) Nat Biotechnol , vol.33 , pp. 1061-1072
    • Lee, S.Y.1    Kim, H.U.2
  • 4
    • 84961115730 scopus 로고    scopus 로고
    • Biosensor-based engineering of biosynthetic pathways
    • Rogers JK, Taylor ND, Church GM. 2016. Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84-91. https://doi.org/ 10.1016/j.copbio.2016.03.005
    • (2016) Curr Opin Biotechnol , vol.42 , pp. 84-91
    • Rogers, J.K.1    Taylor, N.D.2    Church, G.M.3
  • 5
    • 84960460639 scopus 로고    scopus 로고
    • Engineering cellular metabolism
    • Nielsen J, Keasling JD. 2016. Engineering cellular metabolism. Cell 164: 1185-1197. https://doi.org/10.1016/j.cell.2016.02.004
    • (2016) Cell , vol.164 , pp. 1185-1197
    • Nielsen, J.1    Keasling, J.D.2
  • 6
    • 84952682854 scopus 로고    scopus 로고
    • CRISPR/Cas9 advances engineering of microbial cell factories
    • Jakočiuńas T, Jensen MK, Keasling JD. 2016. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44-59. https://doi.org/10.1016/j.ymben.2015.12.003
    • (2016) Metab Eng , vol.34 , pp. 44-59
    • Jakočiuńas, T.1    Jensen, M.K.2    Keasling, J.D.3
  • 7
    • 84920896587 scopus 로고    scopus 로고
    • Next-generation genomescale models for metabolic engineering
    • King ZA, Lloyd CJ, Feist AM, Palsson BO. 2015. Next-generation genomescale models for metabolic engineering. Curr Opin Biotechnol 35:23-29. https://doi.org/10.1016/j.copbio.2014.12.016
    • (2015) Curr Opin Biotechnol , vol.35 , pp. 23-29
    • King, Z.A.1    Lloyd, C.J.2    Feist, A.M.3    Palsson, B.O.4
  • 9
    • 84923868543 scopus 로고    scopus 로고
    • Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products
    • Becker J, Wittmann C. 2015. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54: 3328-3350. https://doi.org/10.1002/anie.201409033
    • (2015) Angew Chem Int Ed Engl , vol.54 , pp. 3328-3350
    • Becker, J.1    Wittmann, C.2
  • 10
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
    • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. 2011. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159-168. https:// doi.org/10.1016/j.ymben.2011.01.003
    • (2011) Metab Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 11
    • 33748556857 scopus 로고    scopus 로고
    • Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli
    • Smith GM, Lee SA, Reilly KC, Eiteman MA, Altman E. 2006. Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Biotechnol Lett 28:1695-1700. https://doi.org/10.1007/s10529-006-9142-3
    • (2006) Biotechnol Lett , vol.28 , pp. 1695-1700
    • Smith, G.M.1    Lee, S.A.2    Reilly, K.C.3    Eiteman, M.A.4    Altman, E.5
  • 13
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • Varma A, Palsson BO. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724-3731
    • (1994) Appl Environ Microbiol , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.O.2
  • 14
    • 84944400518 scopus 로고    scopus 로고
    • Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation
    • Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M. 2015. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation. Appl Environ Microbiol 81:7496-7508. https://doi.org/10.1128/AEM.02413-15
    • (2015) Appl Environ Microbiol , vol.81 , pp. 7496-7508
    • Michel, A.1    Koch-Koerfges, A.2    Krumbach, K.3    Brocker, M.4    Bott, M.5
  • 15
    • 34547461685 scopus 로고    scopus 로고
    • Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor
    • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H. 2007. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889-897. https://doi.org/10.1007/s00253-007-0879-y
    • (2007) Appl Microbiol Biotechnol , vol.75 , pp. 889-897
    • Nishimura, T.1    Vertès, A.A.2    Shinoda, Y.3    Inui, M.4    Yukawa, H.5
  • 17
    • 0035140099 scopus 로고    scopus 로고
    • Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
    • Gombert AK, dos Santos MM, Christensen B, Nielsen J. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441-1451. https://doi.org/10.1128/JB.183.4.1441-1451.2001
    • (2001) J Bacteriol , vol.183 , pp. 1441-1451
    • Gombert, A.K.1    dos Santos, M.M.2    Christensen, B.3    Nielsen, J.4
  • 18
    • 0031015551 scopus 로고    scopus 로고
    • Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
    • Nissen TL, Schulze U, Nielsen J, Villadsen J. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203-218. https://doi.org/10.1099/00221287-143-1-203
    • (1997) Microbiology , vol.143 , pp. 203-218
    • Nissen, T.L.1    Schulze, U.2    Nielsen, J.3    Villadsen, J.4
  • 19
    • 51249195920 scopus 로고
    • Some observations on the physiology of Pseudomonas natriegens nov. spec
    • Payne WJ, Eagon RG, Williams AK. 1961. Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Van Leeuwenhoek 27:121-128. https://doi.org/10.1007/BF02538432
    • (1961) Antonie Van Leeuwenhoek , vol.27 , pp. 121-128
    • Payne, W.J.1    Eagon, R.G.2    Williams, A.K.3
  • 20
    • 0008467605 scopus 로고
    • Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes
    • Eagon RG. 1962. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J Bacteriol 83:736-737
    • (1962) J Bacteriol , vol.83 , pp. 736-737
    • Eagon, R.G.1
  • 21
    • 84984666893 scopus 로고    scopus 로고
    • Vibrio natriegens as a fast-growing host for molecular biology
    • Weinstock MT, Hesek ED, Wilson CM, Gibson DG. 2016. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 13:849-851. https://doi.org/10.1038/nmeth.3970
    • (2016) Nat Methods , vol.13 , pp. 849-851
    • Weinstock, M.T.1    Hesek, E.D.2    Wilson, C.M.3    Gibson, D.G.4
  • 22
    • 85029539622 scopus 로고    scopus 로고
    • Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens
    • Dalia TN, Hayes CA, Stolyar S, Marx CJ, McKinlay JB, Dalia AB. 2017. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth Biol https://doi.org/10.1021/acssynbio.7b00116
    • (2017) ACS Synth Biol
    • Dalia, T.N.1    Hayes, C.A.2    Stolyar, S.3    Marx, C.J.4    McKinlay, J.B.5    Dalia, A.B.6
  • 23
    • 0026027894 scopus 로고
    • Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains
    • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H. 1991. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617-622. https://doi.org/10.1007/BF00167910
    • (1991) Appl Microbiol Biotechnol , vol.34 , pp. 617-622
    • Eikmanns, B.J.1    Metzger, M.2    Reinscheid, D.3    Kircher, M.4    Sahm, H.5
  • 25
    • 84997771443 scopus 로고    scopus 로고
    • Draft genome sequence of the fast-growing marine bacterium Vibrio natriegens strain ATCC 14048
    • Wang Z, Lin B, Hervey WJ, IV, Vora GJ. 2013. Draft genome sequence of the fast-growing marine bacterium Vibrio natriegens strain ATCC 14048. Genome Announc 1:e00589-13. https://doi.org/10.1128/genomeA.00589-13
    • (2013) Genome Announc , vol.1
    • Wang, Z.1    Lin, B.2    Hervey, W.J.3    Vora, G.J.4
  • 26
    • 0029913592 scopus 로고    scopus 로고
    • Flagellin A is essential for the virulence of Vibrio anguillarum
    • Milton DL, O'Toole R, Hörstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178: 1310-1319. https://doi.org/10.1128/jb.178.5.1310-1319.1996
    • (1996) J Bacteriol , vol.178 , pp. 1310-1319
    • Milton, D.L.1    O'Toole, R.2    Hörstedt, P.3    Wolf-Watz, H.4
  • 27
    • 0002786653 scopus 로고
    • Build better industrial bioreactors
    • Chisti Y. 1992. Build better industrial bioreactors. Chem Eng Progress 88:55-58
    • (1992) Chem Eng Progress , vol.88 , pp. 55-58
    • Chisti, Y.1
  • 28
    • 0019132335 scopus 로고
    • Are growth rates of Escherichia coli in batch cultures limited by respiration?
    • Andersen KB, von Meyenburg K. 1980. Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144:114-123
    • (1980) J Bacteriol , vol.144 , pp. 114-123
    • Andersen, K.B.1    von Meyenburg, K.2
  • 29
    • 47349107339 scopus 로고    scopus 로고
    • Maintenance metabolism and carbon fluxes in Bacillus species
    • Tännler S, Decasper S, Sauer U. 2008. Maintenance metabolism and carbon fluxes in Bacillus species. Microb Cell Fact 7:19. https://doi.org/ 10.1186/1475-2859-7-19
    • (2008) Microb Cell Fact , vol.7 , pp. 19
    • Tännler, S.1    Decasper, S.2    Sauer, U.3
  • 31
    • 0014320454 scopus 로고
    • Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation
    • Beck C, von Meyenburg HK. 1968. Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J Bacteriol 96:479-486
    • (1968) J Bacteriol , vol.96 , pp. 479-486
    • Beck, C.1    von Meyenburg, H.K.2
  • 32
    • 84982783997 scopus 로고    scopus 로고
    • The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources
    • Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. 2016. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 234:139-157. https://doi.org/10.1016/j.jbiotec.2016.07.022
    • (2016) J Biotechnol , vol.234 , pp. 139-157
    • Wendisch, V.F.1    Brito, L.F.2    Gil Lopez, M.3    Hennig, G.4    Pfeifenschneider, J.5    Sgobba, E.6    Veldmann, K.H.7
  • 33
    • 73049174074 scopus 로고
    • Dissimilation of glucose and gluconic acid by Pseudomonas natriegens
    • Eagon RG, Wang CH. 1962. Dissimilation of glucose and gluconic acid by Pseudomonas natriegens. J Bacteriol 83:879-886
    • (1962) J Bacteriol , vol.83 , pp. 879-886
    • Eagon, R.G.1    Wang, C.H.2
  • 34
    • 67649622058 scopus 로고    scopus 로고
    • Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations
    • Rühl J, Schmid A, Blank LM. 2009. Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653-4656. https://doi.org/10.1128/AEM.00225-09
    • (2009) Appl Environ Microbiol , vol.75 , pp. 4653-4656
    • Rühl, J.1    Schmid, A.2    Blank, L.M.3
  • 35
    • 84886422324 scopus 로고    scopus 로고
    • Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition
    • van Duuren JB, Puchalka J, Mars AE, Bücker R, Eggink G, Wittmann C, Dos Santos VA. 2013. Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition. BMC Biotechnol 13:93. https://doi.org/10.1186/1472-6750-13-93
    • (2013) BMC Biotechnol , vol.13 , pp. 93
    • van Duuren, J.B.1    Puchalka, J.2    Mars, A.E.3    Bücker, R.4    Eggink, G.5    Wittmann, C.6    Dos Santos, V.A.7
  • 37
    • 85001736145 scopus 로고    scopus 로고
    • Zero-growth bioprocesses-a challenge for microbial production strains and bioprocess engineering
    • Lange J, Takors R, Blombach B. 2016. Zero-growth bioprocesses-a challenge for microbial production strains and bioprocess engineering. Eng Life Sci 17:27-35. https://doi.org/10.1002/elsc.201600108
    • (2016) Eng Life Sci , vol.17 , pp. 27-35
    • Lange, J.1    Takors, R.2    Blombach, B.3
  • 38
    • 38349093902 scopus 로고    scopus 로고
    • Microbial production of organic acids: expanding the markets
    • Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol 26: 100-108. https://doi.org/10.1016/j.tibtech.2007.11.006
    • (2008) Trends Biotechnol , vol.26 , pp. 100-108
    • Sauer, M.1    Porro, D.2    Mattanovich, D.3    Branduardi, P.4
  • 39
    • 84873978248 scopus 로고    scopus 로고
    • Bio-based production of organic acids with Corynebacterium glutamicum
    • Wieschalka S, Blombach B, Bott M, Eikmanns BJ. 2013. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87-102. https://doi.org/10.1111/1751-7915.12013
    • (2013) Microb Biotechnol , vol.6 , pp. 87-102
    • Wieschalka, S.1    Blombach, B.2    Bott, M.3    Eikmanns, B.J.4
  • 40
    • 84947614696 scopus 로고    scopus 로고
    • Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering
    • Cho C, Choi SY, Luo ZW, Lee SY. 2015. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 33:1455-1466. https://doi.org/10.1016/j.biotechadv.2014.11.006
    • (2015) Biotechnol Adv , vol.33 , pp. 1455-1466
    • Cho, C.1    Choi, S.Y.2    Luo, Z.W.3    Lee, S.Y.4
  • 41
    • 0000154712 scopus 로고
    • A broad host range mobilization system for in vivo genetic engineering: transposon mutagenisis in Gram negative bacteria
    • Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenisis in Gram negative bacteria. Nat Biotechnol 1:787-796. https://doi.org/10.1038/ nbt1183-784
    • (1983) Nat Biotechnol , vol.1 , pp. 787-796
    • Simon, R.1    Priefer, U.2    Pühler, A.3
  • 43
    • 0000440206 scopus 로고
    • D-Glucose
    • Bergmeyer HU (eds.) Verlag Chemie, Weinheim, Germany, 3rd ed
    • Lamprecht W, Heinz F. 1983. D-Glucose, p 163-172. In Bergmeyer HU (ed), Methods of enzymatic analysis, 3rd ed, vol 6. Verlag Chemie, Weinheim, Germany
    • (1983) Methods of enzymatic analysis , vol.6 , pp. 163-172
    • Lamprecht, W.1    Heinz, F.2
  • 44
    • 84924034792 scopus 로고    scopus 로고
    • Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry
    • Teleki A, Sánchez-Kopper A, Takors R. 2015. Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry. Anal Biochem 475: 4-13. https://doi.org/10.1016/j.ab.2015.01.002
    • (2015) Anal Biochem , vol.475 , pp. 4-13
    • Teleki, A.1    Sánchez-Kopper, A.2    Takors, R.3
  • 45
    • 84903213748 scopus 로고    scopus 로고
    • Improving the carbon balance of fermentations by total carbon analyses
    • Buchholz J, Graf M, Blombach B, Takors R. 2014. Improving the carbon balance of fermentations by total carbon analyses. Biochem Eng J 90:162-169. https://doi.org/10.1016/j.bej.2014.06.007
    • (2014) Biochem Eng J , vol.90 , pp. 162-169
    • Buchholz, J.1    Graf, M.2    Blombach, B.3    Takors, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.