-
1
-
-
33846950348
-
Challenges in engineering microbes for biofuels production
-
Stephanopoulos G. 2007. Challenges in engineering microbes for biofuels production. Science 315:801-804. https://doi.org/10.1126/science.1139612
-
(2007)
Science
, vol.315
, pp. 801-804
-
-
Stephanopoulos, G.1
-
2
-
-
0033797405
-
Improvement of microbial strains and fermentation processes
-
Parekh S, Vinci VA, Strobel RJ. 2000. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287-301. https://doi.org/10.1007/s002530000403
-
(2000)
Appl Microbiol Biotechnol
, vol.54
, pp. 287-301
-
-
Parekh, S.1
Vinci, V.A.2
Strobel, R.J.3
-
3
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
Lee SY, Kim HU. 2015. Systems strategies for developing industrial microbial strains. Nat Biotechnol 33:1061-1072. https://doi.org/10.1038/ nbt.3365
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
4
-
-
84961115730
-
Biosensor-based engineering of biosynthetic pathways
-
Rogers JK, Taylor ND, Church GM. 2016. Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84-91. https://doi.org/ 10.1016/j.copbio.2016.03.005
-
(2016)
Curr Opin Biotechnol
, vol.42
, pp. 84-91
-
-
Rogers, J.K.1
Taylor, N.D.2
Church, G.M.3
-
5
-
-
84960460639
-
Engineering cellular metabolism
-
Nielsen J, Keasling JD. 2016. Engineering cellular metabolism. Cell 164: 1185-1197. https://doi.org/10.1016/j.cell.2016.02.004
-
(2016)
Cell
, vol.164
, pp. 1185-1197
-
-
Nielsen, J.1
Keasling, J.D.2
-
6
-
-
84952682854
-
CRISPR/Cas9 advances engineering of microbial cell factories
-
Jakočiuńas T, Jensen MK, Keasling JD. 2016. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44-59. https://doi.org/10.1016/j.ymben.2015.12.003
-
(2016)
Metab Eng
, vol.34
, pp. 44-59
-
-
Jakočiuńas, T.1
Jensen, M.K.2
Keasling, J.D.3
-
7
-
-
84920896587
-
Next-generation genomescale models for metabolic engineering
-
King ZA, Lloyd CJ, Feist AM, Palsson BO. 2015. Next-generation genomescale models for metabolic engineering. Curr Opin Biotechnol 35:23-29. https://doi.org/10.1016/j.copbio.2014.12.016
-
(2015)
Curr Opin Biotechnol
, vol.35
, pp. 23-29
-
-
King, Z.A.1
Lloyd, C.J.2
Feist, A.M.3
Palsson, B.O.4
-
8
-
-
84958247886
-
Synthetic biology to access and expand nature's chemical diversity
-
Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA. 2016. Synthetic biology to access and expand nature's chemical diversity. Nat Rev Microbiol 14:135-149. https://doi.org/10.1038/nrmicro.2015.24
-
(2016)
Nat Rev Microbiol
, vol.14
, pp. 135-149
-
-
Smanski, M.J.1
Zhou, H.2
Claesen, J.3
Shen, B.4
Fischbach, M.A.5
Voigt, C.A.6
-
9
-
-
84923868543
-
Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products
-
Becker J, Wittmann C. 2015. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54: 3328-3350. https://doi.org/10.1002/anie.201409033
-
(2015)
Angew Chem Int Ed Engl
, vol.54
, pp. 3328-3350
-
-
Becker, J.1
Wittmann, C.2
-
10
-
-
79952106791
-
From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production
-
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. 2011. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13:159-168. https:// doi.org/10.1016/j.ymben.2011.01.003
-
(2011)
Metab Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
11
-
-
33748556857
-
Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli
-
Smith GM, Lee SA, Reilly KC, Eiteman MA, Altman E. 2006. Fed-batch two-phase production of alanine by a metabolically engineered Escherichia coli. Biotechnol Lett 28:1695-1700. https://doi.org/10.1007/s10529-006-9142-3
-
(2006)
Biotechnol Lett
, vol.28
, pp. 1695-1700
-
-
Smith, G.M.1
Lee, S.A.2
Reilly, K.C.3
Eiteman, M.A.4
Altman, E.5
-
12
-
-
0029781898
-
Physiology and metabolic fluxes of wild-type and riboflavinproducing Bacillus subtilis
-
Sauer U, Hatzimanikatis V, Hohmann HP, Manneberg M, van Loon AP, Bailey JE. 1996. Physiology and metabolic fluxes of wild-type and riboflavinproducing Bacillus subtilis. Appl Environ Microbiol 62:3687-3696
-
(1996)
Appl Environ Microbiol
, vol.62
, pp. 3687-3696
-
-
Sauer, U.1
Hatzimanikatis, V.2
Hohmann, H.P.3
Manneberg, M.4
van Loon, A.P.5
Bailey, J.E.6
-
13
-
-
0028146781
-
Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
-
Varma A, Palsson BO. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724-3731
-
(1994)
Appl Environ Microbiol
, vol.60
, pp. 3724-3731
-
-
Varma, A.1
Palsson, B.O.2
-
14
-
-
84944400518
-
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation
-
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M. 2015. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation. Appl Environ Microbiol 81:7496-7508. https://doi.org/10.1128/AEM.02413-15
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 7496-7508
-
-
Michel, A.1
Koch-Koerfges, A.2
Krumbach, K.3
Brocker, M.4
Bott, M.5
-
15
-
-
34547461685
-
Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor
-
Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H. 2007. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889-897. https://doi.org/10.1007/s00253-007-0879-y
-
(2007)
Appl Microbiol Biotechnol
, vol.75
, pp. 889-897
-
-
Nishimura, T.1
Vertès, A.A.2
Shinoda, Y.3
Inui, M.4
Yukawa, H.5
-
16
-
-
84899045634
-
2 on anaerobic succinate production by Corynebacterium glutamicum: carbon flux analysis by 13C-NMR
-
2 on anaerobic succinate production by Corynebacterium glutamicum: carbon flux analysis by 13C-NMR. Appl Environ Microbiol 80:3015-3024. https://doi.org/10.1128/ AEM.04189-13
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 3015-3024
-
-
Radoš, D.1
Turner, D.L.2
Fonseca, L.L.3
Carvalho, A.L.4
Blombach, B.5
Eikmanns, B.J.6
Neves, A.R.7
Santos, H.8
-
17
-
-
0035140099
-
Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression
-
Gombert AK, dos Santos MM, Christensen B, Nielsen J. 2001. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441-1451. https://doi.org/10.1128/JB.183.4.1441-1451.2001
-
(2001)
J Bacteriol
, vol.183
, pp. 1441-1451
-
-
Gombert, A.K.1
dos Santos, M.M.2
Christensen, B.3
Nielsen, J.4
-
18
-
-
0031015551
-
Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae
-
Nissen TL, Schulze U, Nielsen J, Villadsen J. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203-218. https://doi.org/10.1099/00221287-143-1-203
-
(1997)
Microbiology
, vol.143
, pp. 203-218
-
-
Nissen, T.L.1
Schulze, U.2
Nielsen, J.3
Villadsen, J.4
-
19
-
-
51249195920
-
Some observations on the physiology of Pseudomonas natriegens nov. spec
-
Payne WJ, Eagon RG, Williams AK. 1961. Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Van Leeuwenhoek 27:121-128. https://doi.org/10.1007/BF02538432
-
(1961)
Antonie Van Leeuwenhoek
, vol.27
, pp. 121-128
-
-
Payne, W.J.1
Eagon, R.G.2
Williams, A.K.3
-
20
-
-
0008467605
-
Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes
-
Eagon RG. 1962. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J Bacteriol 83:736-737
-
(1962)
J Bacteriol
, vol.83
, pp. 736-737
-
-
Eagon, R.G.1
-
21
-
-
84984666893
-
Vibrio natriegens as a fast-growing host for molecular biology
-
Weinstock MT, Hesek ED, Wilson CM, Gibson DG. 2016. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 13:849-851. https://doi.org/10.1038/nmeth.3970
-
(2016)
Nat Methods
, vol.13
, pp. 849-851
-
-
Weinstock, M.T.1
Hesek, E.D.2
Wilson, C.M.3
Gibson, D.G.4
-
22
-
-
85029539622
-
Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens
-
Dalia TN, Hayes CA, Stolyar S, Marx CJ, McKinlay JB, Dalia AB. 2017. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth Biol https://doi.org/10.1021/acssynbio.7b00116
-
(2017)
ACS Synth Biol
-
-
Dalia, T.N.1
Hayes, C.A.2
Stolyar, S.3
Marx, C.J.4
McKinlay, J.B.5
Dalia, A.B.6
-
23
-
-
0026027894
-
Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains
-
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H. 1991. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617-622. https://doi.org/10.1007/BF00167910
-
(1991)
Appl Microbiol Biotechnol
, vol.34
, pp. 617-622
-
-
Eikmanns, B.J.1
Metzger, M.2
Reinscheid, D.3
Kircher, M.4
Sahm, H.5
-
24
-
-
84997684036
-
Draft genome sequence of the fastgrowing bacterium Vibrio natriegens strain DSMZ 759
-
Maida I, Bosi E, Perrin E, Papaleo MC, Orlandini V, Fondi M, Fani R, Wiegel J, Bianconi G, Canganella F. 2013. Draft genome sequence of the fastgrowing bacterium Vibrio natriegens strain DSMZ 759. Genome Announc 1:e00648-13. https://doi.org/10.1128/genomeA.00648-13
-
(2013)
Genome Announc
, vol.1
-
-
Maida, I.1
Bosi, E.2
Perrin, E.3
Papaleo, M.C.4
Orlandini, V.5
Fondi, M.6
Fani, R.7
Wiegel, J.8
Bianconi, G.9
Canganella, F.10
-
25
-
-
84997771443
-
Draft genome sequence of the fast-growing marine bacterium Vibrio natriegens strain ATCC 14048
-
Wang Z, Lin B, Hervey WJ, IV, Vora GJ. 2013. Draft genome sequence of the fast-growing marine bacterium Vibrio natriegens strain ATCC 14048. Genome Announc 1:e00589-13. https://doi.org/10.1128/genomeA.00589-13
-
(2013)
Genome Announc
, vol.1
-
-
Wang, Z.1
Lin, B.2
Hervey, W.J.3
Vora, G.J.4
-
26
-
-
0029913592
-
Flagellin A is essential for the virulence of Vibrio anguillarum
-
Milton DL, O'Toole R, Hörstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178: 1310-1319. https://doi.org/10.1128/jb.178.5.1310-1319.1996
-
(1996)
J Bacteriol
, vol.178
, pp. 1310-1319
-
-
Milton, D.L.1
O'Toole, R.2
Hörstedt, P.3
Wolf-Watz, H.4
-
27
-
-
0002786653
-
Build better industrial bioreactors
-
Chisti Y. 1992. Build better industrial bioreactors. Chem Eng Progress 88:55-58
-
(1992)
Chem Eng Progress
, vol.88
, pp. 55-58
-
-
Chisti, Y.1
-
28
-
-
0019132335
-
Are growth rates of Escherichia coli in batch cultures limited by respiration?
-
Andersen KB, von Meyenburg K. 1980. Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144:114-123
-
(1980)
J Bacteriol
, vol.144
, pp. 114-123
-
-
Andersen, K.B.1
von Meyenburg, K.2
-
29
-
-
47349107339
-
Maintenance metabolism and carbon fluxes in Bacillus species
-
Tännler S, Decasper S, Sauer U. 2008. Maintenance metabolism and carbon fluxes in Bacillus species. Microb Cell Fact 7:19. https://doi.org/ 10.1186/1475-2859-7-19
-
(2008)
Microb Cell Fact
, vol.7
, pp. 19
-
-
Tännler, S.1
Decasper, S.2
Sauer, U.3
-
31
-
-
0014320454
-
Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation
-
Beck C, von Meyenburg HK. 1968. Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J Bacteriol 96:479-486
-
(1968)
J Bacteriol
, vol.96
, pp. 479-486
-
-
Beck, C.1
von Meyenburg, H.K.2
-
32
-
-
84982783997
-
The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources
-
Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH. 2016. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 234:139-157. https://doi.org/10.1016/j.jbiotec.2016.07.022
-
(2016)
J Biotechnol
, vol.234
, pp. 139-157
-
-
Wendisch, V.F.1
Brito, L.F.2
Gil Lopez, M.3
Hennig, G.4
Pfeifenschneider, J.5
Sgobba, E.6
Veldmann, K.H.7
-
33
-
-
73049174074
-
Dissimilation of glucose and gluconic acid by Pseudomonas natriegens
-
Eagon RG, Wang CH. 1962. Dissimilation of glucose and gluconic acid by Pseudomonas natriegens. J Bacteriol 83:879-886
-
(1962)
J Bacteriol
, vol.83
, pp. 879-886
-
-
Eagon, R.G.1
Wang, C.H.2
-
34
-
-
67649622058
-
Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations
-
Rühl J, Schmid A, Blank LM. 2009. Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653-4656. https://doi.org/10.1128/AEM.00225-09
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 4653-4656
-
-
Rühl, J.1
Schmid, A.2
Blank, L.M.3
-
35
-
-
84886422324
-
Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition
-
van Duuren JB, Puchalka J, Mars AE, Bücker R, Eggink G, Wittmann C, Dos Santos VA. 2013. Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition. BMC Biotechnol 13:93. https://doi.org/10.1186/1472-6750-13-93
-
(2013)
BMC Biotechnol
, vol.13
, pp. 93
-
-
van Duuren, J.B.1
Puchalka, J.2
Mars, A.E.3
Bücker, R.4
Eggink, G.5
Wittmann, C.6
Dos Santos, V.A.7
-
36
-
-
84865362287
-
Bio-based production of C2-C6 platform chemicals
-
Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY. 2012. Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109:2437-2459. https://doi.org/10.1002/bit.24599
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 2437-2459
-
-
Jang, Y.S.1
Kim, B.2
Shin, J.H.3
Choi, Y.J.4
Choi, S.5
Song, C.W.6
Lee, J.7
Park, H.G.8
Lee, S.Y.9
-
37
-
-
85001736145
-
Zero-growth bioprocesses-a challenge for microbial production strains and bioprocess engineering
-
Lange J, Takors R, Blombach B. 2016. Zero-growth bioprocesses-a challenge for microbial production strains and bioprocess engineering. Eng Life Sci 17:27-35. https://doi.org/10.1002/elsc.201600108
-
(2016)
Eng Life Sci
, vol.17
, pp. 27-35
-
-
Lange, J.1
Takors, R.2
Blombach, B.3
-
38
-
-
38349093902
-
Microbial production of organic acids: expanding the markets
-
Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol 26: 100-108. https://doi.org/10.1016/j.tibtech.2007.11.006
-
(2008)
Trends Biotechnol
, vol.26
, pp. 100-108
-
-
Sauer, M.1
Porro, D.2
Mattanovich, D.3
Branduardi, P.4
-
39
-
-
84873978248
-
Bio-based production of organic acids with Corynebacterium glutamicum
-
Wieschalka S, Blombach B, Bott M, Eikmanns BJ. 2013. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87-102. https://doi.org/10.1111/1751-7915.12013
-
(2013)
Microb Biotechnol
, vol.6
, pp. 87-102
-
-
Wieschalka, S.1
Blombach, B.2
Bott, M.3
Eikmanns, B.J.4
-
40
-
-
84947614696
-
Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering
-
Cho C, Choi SY, Luo ZW, Lee SY. 2015. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol Adv 33:1455-1466. https://doi.org/10.1016/j.biotechadv.2014.11.006
-
(2015)
Biotechnol Adv
, vol.33
, pp. 1455-1466
-
-
Cho, C.1
Choi, S.Y.2
Luo, Z.W.3
Lee, S.Y.4
-
41
-
-
0000154712
-
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenisis in Gram negative bacteria
-
Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenisis in Gram negative bacteria. Nat Biotechnol 1:787-796. https://doi.org/10.1038/ nbt1183-784
-
(1983)
Nat Biotechnol
, vol.1
, pp. 787-796
-
-
Simon, R.1
Priefer, U.2
Pühler, A.3
-
42
-
-
0003903343
-
-
3rd ed Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
Sambrook J, Russell DW, Irwin N, Janssen UA. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
(2001)
Molecular cloning: a laboratory manual
-
-
Sambrook, J.1
Russell, D.W.2
Irwin, N.3
Janssen, U.A.4
-
43
-
-
0000440206
-
D-Glucose
-
Bergmeyer HU (eds.) Verlag Chemie, Weinheim, Germany, 3rd ed
-
Lamprecht W, Heinz F. 1983. D-Glucose, p 163-172. In Bergmeyer HU (ed), Methods of enzymatic analysis, 3rd ed, vol 6. Verlag Chemie, Weinheim, Germany
-
(1983)
Methods of enzymatic analysis
, vol.6
, pp. 163-172
-
-
Lamprecht, W.1
Heinz, F.2
-
44
-
-
84924034792
-
Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry
-
Teleki A, Sánchez-Kopper A, Takors R. 2015. Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry. Anal Biochem 475: 4-13. https://doi.org/10.1016/j.ab.2015.01.002
-
(2015)
Anal Biochem
, vol.475
, pp. 4-13
-
-
Teleki, A.1
Sánchez-Kopper, A.2
Takors, R.3
-
45
-
-
84903213748
-
Improving the carbon balance of fermentations by total carbon analyses
-
Buchholz J, Graf M, Blombach B, Takors R. 2014. Improving the carbon balance of fermentations by total carbon analyses. Biochem Eng J 90:162-169. https://doi.org/10.1016/j.bej.2014.06.007
-
(2014)
Biochem Eng J
, vol.90
, pp. 162-169
-
-
Buchholz, J.1
Graf, M.2
Blombach, B.3
Takors, R.4
|