메뉴 건너뛰기




Volumn 8, Issue , 2014, Pages

Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD

Author keywords

[No Author keywords available]

Indexed keywords

MOLECULAR MARKER;

EID: 85018193104     PISSN: None     EISSN: 17536561     Source Type: Journal    
DOI: 10.1186/1753-6561-8-S5-S7     Document Type: Conference Paper
Times cited : (35)

References (41)
  • 1
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • 11290733 1:CAS:528:DC%2BD3MXjsFemtbY%3D 1461589
    • Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001, 157: 1819-1829.
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 2
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for non-orthogonal problems
    • 10.1080/00401706.1970.10488634
    • Kennard RW: Ridge regression: biased estimation for non-orthogonal problems. Technometrics. 1970, 12: 55-67. 10.1080/00401706.1970.10488634.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Kennard, R.W.1
  • 3
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R: Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B. 1996, 58: 267-288.
    • (1996) J Roy Statist Soc ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 4
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • 10.1111/j.1467-9868.2005.00503.x
    • Hastie T: Regularization and variable selection via the elastic net. J Roy Statist Soc Ser B. 2005, 67: 301-320. 10.1111/j.1467-9868.2005.00503.x.
    • (2005) J Roy Statist Soc ser B , vol.67 , pp. 301-320
    • Hastie, T.1
  • 5
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • 10.1080/00401706.1993.10485033
    • Frank IE, Friedman JH: A statistical view of some chemometrics regression tools (with discussion). Technometrics. 1993, 35: 109-148. 10.1080/00401706.1993.10485033.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 6
    • 82955176938 scopus 로고    scopus 로고
    • Genomic selection in plant breeding: A comparison of models
    • 10.2135/cropsci2011.06.0297
    • Heslot N, Yang HP, Sorrells ME, Jannink JL: Genomic selection in plant breeding: a comparison of models. Crop Sci. 2012, 52: 146-160. 10.2135/cropsci2011.06.0297.
    • (2012) Crop Sci , vol.52 , pp. 146-160
    • Heslot, N.1    Yang, H.P.2    Sorrells, M.E.3    Jannink, J.L.4
  • 7
    • 84863316272 scopus 로고    scopus 로고
    • Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions
    • BioMed Central Ltd
    • Ogutu JO, Schulz-Streeck T, Piepho H-P: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proceedings. 2012, BioMed Central Ltd, 6 (Suppl 2)
    • (2012) BMC Proceedings , vol.6
    • Ogutu, J.O.1    Schulz-Streeck, T.2    Piepho, H.-P.3
  • 8
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • 10.1214/009053607000000875
    • Huang J, Horowitz JL, Ma S: Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Statist. 2008, 36: 587-613. 10.1214/009053607000000875.
    • (2008) Ann Statist , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.3
  • 9
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: The bridge versus the lasso
    • Fu WJ: Penalized regressions: The bridge versus the lasso. J Comput Graph Statist. 1998, 7: 397-416.
    • (1998) J Comput Graph Statist , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 10
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Knight K, Fu W: Asymptotics for Lasso-type estimators. Ann Statist. 2000, 28: 356-1378.
    • (2000) Ann Statist , vol.28 , pp. 356-1378
    • Knight, K.1    Fu, W.2
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle Properties
    • 10.1198/016214501753382273
    • Fan J, Li R: Variable selection via nonconcave penalized likelihood and its oracle Properties. J Amer Statist Assoc. 2001, 96: 1348-1360. 10.1198/016214501753382273.
    • (2001) J Amer Statist Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 12
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • 10.1214/009053604000000256
    • Fan J, Peng H: Nonconcave penalized likelihood with a diverging number of parameters. Ann Stat. 2004, 32: 928-961. 10.1214/009053604000000256.
    • (2004) Ann Stat , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 13
    • 0034113697 scopus 로고    scopus 로고
    • Marker-assisted selection using ridge regression
    • 10.1017/S0016672399004462 10816982 1:STN:280:DC%2BD3c3ns12rsg%3D%3D
    • Whittaker JC, Thompson R, Denham MC: Marker-assisted selection using ridge regression. Genet Res. 2000, 75: 249-252. 10.1017/S0016672399004462.
    • (2000) Genet Res , vol.75 , pp. 249-252
    • Whittaker, J.C.1    Thompson, R.2    Denham, M.C.3
  • 14
    • 67849083102 scopus 로고    scopus 로고
    • Ridge regression and extensions for genomewide selection in maize
    • 10.2135/cropsci2008.10.0595
    • Piepho HP: Ridge regression and extensions for genomewide selection in maize. Crop Sci. 2009, 49: 1165-1176. 10.2135/cropsci2008.10.0595.
    • (2009) Crop Sci , vol.49 , pp. 1165-1176
    • Piepho, H.P.1
  • 15
    • 84860003102 scopus 로고    scopus 로고
    • Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding
    • 10.2135/cropsci2011.11.0592
    • Piepho H-P, Ogutu JO, Schulz-Streeck T, Estaghvirou B, Gordillo A, Technow F: Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding. Crop Sci. 2012, 52: 1093-1104. 10.2135/cropsci2011.11.0592.
    • (2012) Crop Sci , vol.52 , pp. 1093-1104
    • Piepho, H.-P.1    Ogutu, J.O.2    Schulz-Streeck, T.3    Estaghvirou, B.4    Gordillo, A.5    Technow, F.6
  • 16
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • 10.1214/09-AOS729
    • Zhang CH: Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010, 38: 894-942. 10.1214/09-AOS729.
    • (2010) Ann Stat , vol.38 , pp. 894-942
    • Zhang, C.H.1
  • 17
    • 51049092645 scopus 로고    scopus 로고
    • Department of Statistics and Bioinformatics, Rutgers University, Technical Report #2007-003
    • Zhang CH: Penalized linear unbiased selection. 2007, Department of Statistics and Bioinformatics, Rutgers University, Technical Report #2007-003
    • (2007) Penalized Linear Unbiased Selection
    • Zhang, C.H.1
  • 18
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • 10.1198/016214506000000735
    • Zhou H: The adaptive lasso and its oracle properties. J Amer Stat Assoc. 2006, 101: 1418-1429. 10.1198/016214506000000735.
    • (2006) J Amer Stat Assoc , vol.101 , pp. 1418-1429
    • Zhou, H.1
  • 19
    • 79959342076 scopus 로고    scopus 로고
    • Penalized methods for bi-level variable selection
    • 10.4310/SII.2009.v2.n3.a10 20640242 2904563
    • Breheny P, Huang J: Penalized methods for bi-level variable selection. Stat Interface. 2009, 2: 369-380. 10.4310/SII.2009.v2.n3.a10.
    • (2009) Stat Interface , vol.2 , pp. 369-380
    • Breheny, P.1    Huang, J.2
  • 20
    • 80053013888 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • 10.1214/10-AOAS388 22081779 3212875
    • Breheny P, Huang J: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann Appl Stat. 2011, 5: 232-253. 10.1214/10-AOAS388.
    • (2011) Ann Appl Stat , vol.5 , pp. 232-253
    • Breheny, P.1    Huang, J.2
  • 21
    • 84871557274 scopus 로고    scopus 로고
    • A selective review of group selection in high-dimensional models
    • 10.1214/12-STS392
    • Huang J, Breheny P, Ma S: A selective review of group selection in high-dimensional models. Statist Sci. 2012, 27: 481-499. 10.1214/12-STS392.
    • (2012) Statist Sci , vol.27 , pp. 481-499
    • Huang, J.1    Breheny, P.2    Ma, S.3
  • 22
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • 10.1093/biomet/asp020 20037673 2796848
    • Huang J, Ma S, Xie H, Zhang CH: A group bridge approach for variable selection. Biometrika. 2009, 96: 339-355. 10.1093/biomet/asp020.
    • (2009) Biometrika , vol.96 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.H.4
  • 23
    • 80955178309 scopus 로고    scopus 로고
    • Bridge regression: Adaptivity and group selection
    • 10.1016/j.jspi.2011.05.004
    • Park C, Yoon YJ: Bridge regression: adaptivity and group selection. J Statist Plann Inference. 2011, 141: 3506-3519. 10.1016/j.jspi.2011.05.004.
    • (2011) J Statist Plann Inference , vol.141 , pp. 3506-3519
    • Park, C.1    Yoon, Y.J.2
  • 24
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • 10.1111/j.1467-9868.2005.00532.x
    • Yuan M, Lin Y: Model selection and estimation in regression with grouped variables. J Roy Statist Soc Ser B. 2006, 68: 49-67. 10.1111/j.1467-9868.2005.00532.x.
    • (2006) J Roy Statist Soc ser B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 26
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group lasso estimator for linear models
    • 10.1214/08-EJS200
    • Nardi Y, Rinaldo A: On the asymptotic properties of the group lasso estimator for linear models. Electron J Statist. 2008, 2: 605-633. 10.1214/08-EJS200.
    • (2008) Electron J Statist , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 27
    • 47749144333 scopus 로고    scopus 로고
    • A note on adaptive group lasso
    • 10.1016/j.csda.2008.05.006
    • Wang H, Leng C: A note on adaptive group lasso. Comput Statist Appl Data Anal. 2008, 52: 5277-5286. 10.1016/j.csda.2008.05.006.
    • (2008) Comput Statist Appl Data Anal , vol.52 , pp. 5277-5286
    • Wang, H.1    Leng, C.2
  • 28
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • 10.1214/07-AOS520
    • Zhang C-H, Huang J: The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann Stat. 2008, 36: 1567-1594. 10.1214/07-AOS520.
    • (2008) Ann Stat , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 29
    • 84870267097 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • 10.1214/09-AOAS271 24489618 3905690
    • Peng J, Zhu J, Bergamaschi A, Han W, Noh DY, Pollack JR, Wang P: Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann Appl Stat. 2010, 4: 53-77. 10.1214/09-AOAS271.
    • (2010) Ann Appl Stat , vol.4 , pp. 53-77
    • Peng, J.1    Zhu, J.2    Bergamaschi, A.3    Han, W.4    Noh, D.Y.5    Pollack, J.R.6    Wang, P.7
  • 32
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared?
    • 10.1093/biomet/92.4.937
    • Yang Y: Can the strengths of AIC and BIC be shared?. Biometrika. 2005, 92: 937-950. 10.1093/biomet/92.4.937.
    • (2005) Biometrika , vol.92 , pp. 937-950
    • Yang, Y.1
  • 33
    • 84856050251 scopus 로고    scopus 로고
    • Empirical performance of cross-validation with oracle methods in genomic context
    • 10.1198/tas.2011.11052
    • Martinez JG, Carroll RJ, Müller S, Sampson JN, Chartterjee N: Empirical performance of cross-validation with oracle methods in genomic context. Amer Statist. 2011, 65: 223-228. 10.1198/tas.2011.11052.
    • (2011) Amer Statist , vol.65 , pp. 223-228
    • Martinez, J.G.1    Carroll, R.J.2    Müller, S.3    Sampson, J.N.4    Chartterjee, N.5
  • 35
    • 84897502125 scopus 로고    scopus 로고
    • Theoretical properties of the overlapping groups lasso
    • Percival D: Theoretical properties of the overlapping groups lasso. Electron J Stat. 2011, 1-21.
    • (2011) Electron J Stat , pp. 1-21
    • Percival, D.1
  • 36
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • 10.1214/07-AOS584
    • Zhao P, Rocha G, Yu B: The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat. 2009, 37: 3468-3497. 10.1214/07-AOS584.
    • (2009) Ann Stat , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 37
    • 84879398938 scopus 로고    scopus 로고
    • A lasso for hierarchical interactions
    • 10.1214/13-AOS1096 26257447 4527358 2013
    • Bien J, Taylor J, Tibshirani R: A lasso for hierarchical interactions. Ann Stat. 2013, 41: 1111-1141. 10.1214/13-AOS1096. 2013
    • (2013) Ann Stat , vol.41 , pp. 1111-1141
    • Bien, J.1    Taylor, J.2    Tibshirani, R.3
  • 39
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • 10.1111/j.1467-9868.2007.00627.x
    • Meier L, van der Geer S, Bühlmann P: The group lasso for logistic regression. J Roy Statist Soc Ser B. 2008, 70: 53-71. 10.1111/j.1467-9868.2007.00627.x.
    • (2008) J Roy Statist Soc ser B , vol.70 , pp. 53-71
    • Meier, L.1    Van Der Geer, S.2    Bühlmann, P.3
  • 40
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • ICML Helsinski, Finland
    • Roth V, Fischer B: The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. Proceedings of the 25th annual international conference on machine learning. 2009, Helsinski, Finland. ICML, 433-440.
    • (2009) Proceedings of the 25th Annual International Conference on Machine Learning , pp. 433-440
    • Roth, V.1    Fischer, B.2
  • 41
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • Bach F: Consistency of the group lasso and multiple kernel learning. J Mach Learn. 2008, 9: 1179-1225.
    • (2008) J Mach Learn , vol.9 , pp. 1179-1225
    • Bach, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.