-
1
-
-
0035045051
-
Prediction of total genetic value using genome-wide dense marker maps
-
11290733 1:CAS:528:DC%2BD3MXjsFemtbY%3D 1461589
-
Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001, 157: 1819-1829.
-
(2001)
Genetics
, vol.157
, pp. 1819-1829
-
-
Meuwissen, T.H.E.1
Hayes, B.J.2
Goddard, M.E.3
-
2
-
-
84942484786
-
Ridge regression: Biased estimation for non-orthogonal problems
-
10.1080/00401706.1970.10488634
-
Kennard RW: Ridge regression: biased estimation for non-orthogonal problems. Technometrics. 1970, 12: 55-67. 10.1080/00401706.1970.10488634.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Kennard, R.W.1
-
3
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R: Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B. 1996, 58: 267-288.
-
(1996)
J Roy Statist Soc ser B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
4
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
10.1111/j.1467-9868.2005.00503.x
-
Hastie T: Regularization and variable selection via the elastic net. J Roy Statist Soc Ser B. 2005, 67: 301-320. 10.1111/j.1467-9868.2005.00503.x.
-
(2005)
J Roy Statist Soc ser B
, vol.67
, pp. 301-320
-
-
Hastie, T.1
-
5
-
-
84952149204
-
A statistical view of some chemometrics regression tools (with discussion)
-
10.1080/00401706.1993.10485033
-
Frank IE, Friedman JH: A statistical view of some chemometrics regression tools (with discussion). Technometrics. 1993, 35: 109-148. 10.1080/00401706.1993.10485033.
-
(1993)
Technometrics
, vol.35
, pp. 109-148
-
-
Frank, I.E.1
Friedman, J.H.2
-
6
-
-
82955176938
-
Genomic selection in plant breeding: A comparison of models
-
10.2135/cropsci2011.06.0297
-
Heslot N, Yang HP, Sorrells ME, Jannink JL: Genomic selection in plant breeding: a comparison of models. Crop Sci. 2012, 52: 146-160. 10.2135/cropsci2011.06.0297.
-
(2012)
Crop Sci
, vol.52
, pp. 146-160
-
-
Heslot, N.1
Yang, H.P.2
Sorrells, M.E.3
Jannink, J.L.4
-
7
-
-
84863316272
-
Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions
-
BioMed Central Ltd
-
Ogutu JO, Schulz-Streeck T, Piepho H-P: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proceedings. 2012, BioMed Central Ltd, 6 (Suppl 2)
-
(2012)
BMC Proceedings
, vol.6
-
-
Ogutu, J.O.1
Schulz-Streeck, T.2
Piepho, H.-P.3
-
8
-
-
49949115667
-
Asymptotic properties of bridge estimators in sparse high-dimensional regression models
-
10.1214/009053607000000875
-
Huang J, Horowitz JL, Ma S: Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Statist. 2008, 36: 587-613. 10.1214/009053607000000875.
-
(2008)
Ann Statist
, vol.36
, pp. 587-613
-
-
Huang, J.1
Horowitz, J.L.2
Ma, S.3
-
9
-
-
0032361278
-
Penalized regressions: The bridge versus the lasso
-
Fu WJ: Penalized regressions: The bridge versus the lasso. J Comput Graph Statist. 1998, 7: 397-416.
-
(1998)
J Comput Graph Statist
, vol.7
, pp. 397-416
-
-
Fu, W.J.1
-
10
-
-
0034287156
-
Asymptotics for Lasso-type estimators
-
Knight K, Fu W: Asymptotics for Lasso-type estimators. Ann Statist. 2000, 28: 356-1378.
-
(2000)
Ann Statist
, vol.28
, pp. 356-1378
-
-
Knight, K.1
Fu, W.2
-
11
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle Properties
-
10.1198/016214501753382273
-
Fan J, Li R: Variable selection via nonconcave penalized likelihood and its oracle Properties. J Amer Statist Assoc. 2001, 96: 1348-1360. 10.1198/016214501753382273.
-
(2001)
J Amer Statist Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
12
-
-
24344502730
-
Nonconcave penalized likelihood with a diverging number of parameters
-
10.1214/009053604000000256
-
Fan J, Peng H: Nonconcave penalized likelihood with a diverging number of parameters. Ann Stat. 2004, 32: 928-961. 10.1214/009053604000000256.
-
(2004)
Ann Stat
, vol.32
, pp. 928-961
-
-
Fan, J.1
Peng, H.2
-
13
-
-
0034113697
-
Marker-assisted selection using ridge regression
-
10.1017/S0016672399004462 10816982 1:STN:280:DC%2BD3c3ns12rsg%3D%3D
-
Whittaker JC, Thompson R, Denham MC: Marker-assisted selection using ridge regression. Genet Res. 2000, 75: 249-252. 10.1017/S0016672399004462.
-
(2000)
Genet Res
, vol.75
, pp. 249-252
-
-
Whittaker, J.C.1
Thompson, R.2
Denham, M.C.3
-
14
-
-
67849083102
-
Ridge regression and extensions for genomewide selection in maize
-
10.2135/cropsci2008.10.0595
-
Piepho HP: Ridge regression and extensions for genomewide selection in maize. Crop Sci. 2009, 49: 1165-1176. 10.2135/cropsci2008.10.0595.
-
(2009)
Crop Sci
, vol.49
, pp. 1165-1176
-
-
Piepho, H.P.1
-
15
-
-
84860003102
-
Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding
-
10.2135/cropsci2011.11.0592
-
Piepho H-P, Ogutu JO, Schulz-Streeck T, Estaghvirou B, Gordillo A, Technow F: Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding. Crop Sci. 2012, 52: 1093-1104. 10.2135/cropsci2011.11.0592.
-
(2012)
Crop Sci
, vol.52
, pp. 1093-1104
-
-
Piepho, H.-P.1
Ogutu, J.O.2
Schulz-Streeck, T.3
Estaghvirou, B.4
Gordillo, A.5
Technow, F.6
-
16
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
10.1214/09-AOS729
-
Zhang CH: Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010, 38: 894-942. 10.1214/09-AOS729.
-
(2010)
Ann Stat
, vol.38
, pp. 894-942
-
-
Zhang, C.H.1
-
17
-
-
51049092645
-
-
Department of Statistics and Bioinformatics, Rutgers University, Technical Report #2007-003
-
Zhang CH: Penalized linear unbiased selection. 2007, Department of Statistics and Bioinformatics, Rutgers University, Technical Report #2007-003
-
(2007)
Penalized Linear Unbiased Selection
-
-
Zhang, C.H.1
-
18
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
10.1198/016214506000000735
-
Zhou H: The adaptive lasso and its oracle properties. J Amer Stat Assoc. 2006, 101: 1418-1429. 10.1198/016214506000000735.
-
(2006)
J Amer Stat Assoc
, vol.101
, pp. 1418-1429
-
-
Zhou, H.1
-
19
-
-
79959342076
-
Penalized methods for bi-level variable selection
-
10.4310/SII.2009.v2.n3.a10 20640242 2904563
-
Breheny P, Huang J: Penalized methods for bi-level variable selection. Stat Interface. 2009, 2: 369-380. 10.4310/SII.2009.v2.n3.a10.
-
(2009)
Stat Interface
, vol.2
, pp. 369-380
-
-
Breheny, P.1
Huang, J.2
-
20
-
-
80053013888
-
Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
-
10.1214/10-AOAS388 22081779 3212875
-
Breheny P, Huang J: Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann Appl Stat. 2011, 5: 232-253. 10.1214/10-AOAS388.
-
(2011)
Ann Appl Stat
, vol.5
, pp. 232-253
-
-
Breheny, P.1
Huang, J.2
-
21
-
-
84871557274
-
A selective review of group selection in high-dimensional models
-
10.1214/12-STS392
-
Huang J, Breheny P, Ma S: A selective review of group selection in high-dimensional models. Statist Sci. 2012, 27: 481-499. 10.1214/12-STS392.
-
(2012)
Statist Sci
, vol.27
, pp. 481-499
-
-
Huang, J.1
Breheny, P.2
Ma, S.3
-
22
-
-
66249102619
-
A group bridge approach for variable selection
-
10.1093/biomet/asp020 20037673 2796848
-
Huang J, Ma S, Xie H, Zhang CH: A group bridge approach for variable selection. Biometrika. 2009, 96: 339-355. 10.1093/biomet/asp020.
-
(2009)
Biometrika
, vol.96
, pp. 339-355
-
-
Huang, J.1
Ma, S.2
Xie, H.3
Zhang, C.H.4
-
23
-
-
80955178309
-
Bridge regression: Adaptivity and group selection
-
10.1016/j.jspi.2011.05.004
-
Park C, Yoon YJ: Bridge regression: adaptivity and group selection. J Statist Plann Inference. 2011, 141: 3506-3519. 10.1016/j.jspi.2011.05.004.
-
(2011)
J Statist Plann Inference
, vol.141
, pp. 3506-3519
-
-
Park, C.1
Yoon, Y.J.2
-
24
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
10.1111/j.1467-9868.2005.00532.x
-
Yuan M, Lin Y: Model selection and estimation in regression with grouped variables. J Roy Statist Soc Ser B. 2006, 68: 49-67. 10.1111/j.1467-9868.2005.00532.x.
-
(2006)
J Roy Statist Soc ser B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
25
-
-
84882287077
-
A sparse-group lasso
-
10.1080/10618600.2012.681250
-
Simon N, Friedman J, Hastie T, Tibshirani R: A sparse-group lasso. J Comput Graph Statist. 2013, 22: 231-245. 10.1080/10618600.2012.681250.
-
(2013)
J Comput Graph Statist
, vol.22
, pp. 231-245
-
-
Simon, N.1
Friedman, J.2
Hastie, T.3
Tibshirani, R.4
-
26
-
-
77949526376
-
On the asymptotic properties of the group lasso estimator for linear models
-
10.1214/08-EJS200
-
Nardi Y, Rinaldo A: On the asymptotic properties of the group lasso estimator for linear models. Electron J Statist. 2008, 2: 605-633. 10.1214/08-EJS200.
-
(2008)
Electron J Statist
, vol.2
, pp. 605-633
-
-
Nardi, Y.1
Rinaldo, A.2
-
27
-
-
47749144333
-
A note on adaptive group lasso
-
10.1016/j.csda.2008.05.006
-
Wang H, Leng C: A note on adaptive group lasso. Comput Statist Appl Data Anal. 2008, 52: 5277-5286. 10.1016/j.csda.2008.05.006.
-
(2008)
Comput Statist Appl Data Anal
, vol.52
, pp. 5277-5286
-
-
Wang, H.1
Leng, C.2
-
28
-
-
50949096321
-
The sparsity and bias of the lasso selection in high-dimensional linear regression
-
10.1214/07-AOS520
-
Zhang C-H, Huang J: The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann Stat. 2008, 36: 1567-1594. 10.1214/07-AOS520.
-
(2008)
Ann Stat
, vol.36
, pp. 1567-1594
-
-
Zhang, C.-H.1
Huang, J.2
-
29
-
-
84870267097
-
Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
-
10.1214/09-AOAS271 24489618 3905690
-
Peng J, Zhu J, Bergamaschi A, Han W, Noh DY, Pollack JR, Wang P: Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann Appl Stat. 2010, 4: 53-77. 10.1214/09-AOAS271.
-
(2010)
Ann Appl Stat
, vol.4
, pp. 53-77
-
-
Peng, J.1
Zhu, J.2
Bergamaschi, A.3
Han, W.4
Noh, D.Y.5
Pollack, J.R.6
Wang, P.7
-
32
-
-
27944460480
-
Can the strengths of AIC and BIC be shared?
-
10.1093/biomet/92.4.937
-
Yang Y: Can the strengths of AIC and BIC be shared?. Biometrika. 2005, 92: 937-950. 10.1093/biomet/92.4.937.
-
(2005)
Biometrika
, vol.92
, pp. 937-950
-
-
Yang, Y.1
-
33
-
-
84856050251
-
Empirical performance of cross-validation with oracle methods in genomic context
-
10.1198/tas.2011.11052
-
Martinez JG, Carroll RJ, Müller S, Sampson JN, Chartterjee N: Empirical performance of cross-validation with oracle methods in genomic context. Amer Statist. 2011, 65: 223-228. 10.1198/tas.2011.11052.
-
(2011)
Amer Statist
, vol.65
, pp. 223-228
-
-
Martinez, J.G.1
Carroll, R.J.2
Müller, S.3
Sampson, J.N.4
Chartterjee, N.5
-
34
-
-
71149113559
-
Group lasso with overlap and graph lasso
-
Montreal, Canada. ICML ACM, New York, NY, USA
-
Jacob L, Obozinski G, Vert J-P: Group lasso with overlap and graph lasso. Proceedings of the 26th annual international conference on machine learning. Montreal, Canada. ICML 2009, 433-440. ACM, New York, NY, USA
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 433-440
-
-
Jacob, L.1
Obozinski, G.2
Vert, J.-P.3
-
35
-
-
84897502125
-
Theoretical properties of the overlapping groups lasso
-
Percival D: Theoretical properties of the overlapping groups lasso. Electron J Stat. 2011, 1-21.
-
(2011)
Electron J Stat
, pp. 1-21
-
-
Percival, D.1
-
36
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
10.1214/07-AOS584
-
Zhao P, Rocha G, Yu B: The composite absolute penalties family for grouped and hierarchical variable selection. Ann Stat. 2009, 37: 3468-3497. 10.1214/07-AOS584.
-
(2009)
Ann Stat
, vol.37
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
37
-
-
84879398938
-
A lasso for hierarchical interactions
-
10.1214/13-AOS1096 26257447 4527358 2013
-
Bien J, Taylor J, Tibshirani R: A lasso for hierarchical interactions. Ann Stat. 2013, 41: 1111-1141. 10.1214/13-AOS1096. 2013
-
(2013)
Ann Stat
, vol.41
, pp. 1111-1141
-
-
Bien, J.1
Taylor, J.2
Tibshirani, R.3
-
39
-
-
37849035696
-
The group lasso for logistic regression
-
10.1111/j.1467-9868.2007.00627.x
-
Meier L, van der Geer S, Bühlmann P: The group lasso for logistic regression. J Roy Statist Soc Ser B. 2008, 70: 53-71. 10.1111/j.1467-9868.2007.00627.x.
-
(2008)
J Roy Statist Soc ser B
, vol.70
, pp. 53-71
-
-
Meier, L.1
Van Der Geer, S.2
Bühlmann, P.3
-
40
-
-
56449115709
-
The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
-
ICML Helsinski, Finland
-
Roth V, Fischer B: The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. Proceedings of the 25th annual international conference on machine learning. 2009, Helsinski, Finland. ICML, 433-440.
-
(2009)
Proceedings of the 25th Annual International Conference on Machine Learning
, pp. 433-440
-
-
Roth, V.1
Fischer, B.2
-
41
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
Bach F: Consistency of the group lasso and multiple kernel learning. J Mach Learn. 2008, 9: 1179-1225.
-
(2008)
J Mach Learn
, vol.9
, pp. 1179-1225
-
-
Bach, F.1
|