메뉴 건너뛰기




Volumn 26, Issue 6, 2012, Pages 218-230

Overview of two-norm (L2) and one-norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance

Author keywords

Calibration maintenance; Calibration standardization; Calibration transfer; Multivariate calibration; Sparse modeling; Tikhonov regularization

Indexed keywords

LEAST SQUARES APPROXIMATIONS; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; STANDARDIZATION;

EID: 84862766223     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.2429     Document Type: Review
Times cited : (73)

References (92)
  • 3
    • 84882504967 scopus 로고    scopus 로고
    • Calibration methodologies
    • Brown SD, Tauler R, Walczak B (eds.-in-chief). Elsevier: Amsterdam
    • Kalivas JH. Calibration methodologies. In Comprehensive Chemometrics: Chemical and Biochemical Data Analysis Vol. 3, Brown SD, Tauler R, Walczak B (eds.-in-chief). Elsevier: Amsterdam, 2009; 1-32.
    • (2009) Comprehensive Chemometrics: Chemical and Biochemical Data Analysis , vol.3 , pp. 1-32
    • Kalivas, J.H.1
  • 5
    • 79954634261 scopus 로고    scopus 로고
    • Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data
    • Balabin RM, Smirnov SV. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 2011; 692: 63-72.
    • (2011) Anal. Chim. Acta , vol.692 , pp. 63-72
    • Balabin, R.M.1    Smirnov, S.V.2
  • 7
    • 0024107993 scopus 로고
    • A Monte Carlo study of the effect of noise on wavelength selection during computerized wavelength searches
    • Mark H. A Monte Carlo study of the effect of noise on wavelength selection during computerized wavelength searches. Appl. Spectrosc. 1988; 42: 1427-1440.
    • (1988) Appl. Spectrosc. , vol.42 , pp. 1427-1440
    • Mark, H.1
  • 9
    • 0037366902 scopus 로고    scopus 로고
    • Assessment of Pareto calibration, stability, and wavelength selection
    • Anderson KJ, Kalivas JH. Assessment of Pareto calibration, stability, and wavelength selection. Appl. Spectrosc. 2003; 57: 309-316.
    • (2003) Appl. Spectrosc. , vol.57 , pp. 309-316
    • Anderson, K.J.1    Kalivas, J.H.2
  • 10
    • 85164295540 scopus 로고
    • Estimation of prediction error for multivariate calibration
    • Lorber A, Kowalski BR. Estimation of prediction error for multivariate calibration. J. Chemom. 1988; 2: 93-109.
    • (1988) J. Chemom. , vol.2 , pp. 93-109
    • Lorber, A.1    Kowalski, B.R.2
  • 11
    • 0001264571 scopus 로고
    • Selection of analytical wavelengths for multicomponent spectrophotometric determinations
    • Frans SD, Harris JM. Selection of analytical wavelengths for multicomponent spectrophotometric determinations. Anal. Chem. 1985; 57: 2680-2684.
    • (1985) Anal. Chem. , vol.57 , pp. 2680-2684
    • Frans, S.D.1    Harris, J.M.2
  • 12
    • 0028828111 scopus 로고
    • Calibration line adjustment to facilitate the use of synthetic calibration samples in near-infrared spectrometric analysis of pharmaceutical production samples
    • Jouan-Rimbaud D, Khots MS, Massart DL, Last IR, Prebble KA. Calibration line adjustment to facilitate the use of synthetic calibration samples in near-infrared spectrometric analysis of pharmaceutical production samples. Anal. Chim. Acta 1995; 315: 257-266.
    • (1995) Anal. Chim. Acta , vol.315 , pp. 257-266
    • Jouan-Rimbaud, D.1    Khots, M.S.2    Massart, D.L.3    Last, I.R.4    Prebble, K.A.5
  • 14
    • 71549117923 scopus 로고    scopus 로고
    • A bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications
    • Gosselin R, Rodrigue D, Duchesne C. A bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemom. Intell. Lab. Syst. 2009; 100: 12-21.
    • (2009) Chemom. Intell. Lab. Syst. , vol.100 , pp. 12-21
    • Gosselin, R.1    Rodrigue, D.2    Duchesne, C.3
  • 15
    • 77049095825 scopus 로고    scopus 로고
    • Selection of individual variables versus intervals of variables in PLSR
    • Sharuatu-Rad M, Hasani M. Selection of individual variables versus intervals of variables in PLSR. J. Chemom. 2009; 24: 45-56.
    • (2009) J. Chemom. , vol.24 , pp. 45-56
    • Sharuatu-Rad, M.1    Hasani, M.2
  • 16
    • 27744466385 scopus 로고    scopus 로고
    • Process analytical technology case study, Part III: Calibration monitoring and transfer
    • Cogdill RP, Anderson CA, Drennen III JK. Process analytical technology case study, Part III: Calibration monitoring and transfer. AAPS PharmSciTech 2005; 6: E284-E297.
    • (2005) AAPS PharmSciTech , vol.6
    • Cogdill, R.P.1    Anderson, C.A.2    Drennen III, J.K.3
  • 17
    • 84882471069 scopus 로고    scopus 로고
    • Transfer of multivariate calibration models
    • Brown SD, Tauler R, Walczak B (eds.). Elsevier: Amsterdam
    • Brown SD. Transfer of multivariate calibration models. In Comprehensive Chemometrics: Chemical and Biochemical Data Analysis Vol. 3, Brown SD, Tauler R, Walczak B (eds.). Elsevier: Amsterdam, 2009; 345-377.
    • (2009) Comprehensive Chemometrics: Chemical and Biochemical Data Analysis , vol.3 , pp. 345-377
    • Brown, S.D.1
  • 18
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Tikhonov AN. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 1963; 4: 1035-1038.
    • (1963) Soviet Math. Dokl. , vol.4 , pp. 1035-1038
    • Tikhonov, A.N.1
  • 21
    • 0042977330 scopus 로고    scopus 로고
    • Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions
    • Gemperline PJ, Cash E. Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating least squares with penalty functions. Anal. Chem. 2003; 75: 4236-4243.
    • (2003) Anal. Chem. , vol.75 , pp. 4236-4243
    • Gemperline, P.J.1    Cash, E.2
  • 22
    • 18844419243 scopus 로고    scopus 로고
    • A general computational method for converting normal spectra into derivative spectra
    • Yeow YL, Leong YK. A general computational method for converting normal spectra into derivative spectra. Appl. Spectrosc. 2005; 59: 584-592.
    • (2005) Appl. Spectrosc. , vol.59 , pp. 584-592
    • Yeow, Y.L.1    Leong, Y.K.2
  • 24
    • 34248175890 scopus 로고    scopus 로고
    • Regularization strategies for hyperplane classifiers: Application to cancer classification with gene expression data
    • Andries E, Hagstrom T, Atlas SR, William C. Regularization strategies for hyperplane classifiers: Application to cancer classification with gene expression data. J. Bioinformatics Comp. Biol. 2007; 5: 79-109.
    • (2007) J. Bioinformatics Comp. Biol. , vol.5 , pp. 79-109
    • Andries, E.1    Hagstrom, T.2    Atlas, S.R.3    William, C.4
  • 25
    • 0009068821 scopus 로고
    • On regularized least norm problems
    • Dax A. On regularized least norm problems. SIAM J. Optimization 1992; 2: 602-618.
    • (1992) SIAM J. Optimization , vol.2 , pp. 602-618
    • Dax, A.1
  • 26
    • 0000079353 scopus 로고    scopus 로고
    • Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares
    • Faber K, Kowalski BR. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemom. 1997; 11: 181-238.
    • (1997) J. Chemom. , vol.11 , pp. 181-238
    • Faber, K.1    Kowalski, B.R.2
  • 27
    • 0030248532 scopus 로고    scopus 로고
    • Prediction error in least squares: Further critique on the deviation used in The Unscrambler
    • Faber K, Kowalski BR. Prediction error in least squares: Further critique on the deviation used in The Unscrambler. Chemom. Intell. Lab. Syst. 1996; 34: 283-292.
    • (1996) Chemom. Intell. Lab. Syst. , vol.34 , pp. 283-292
    • Faber, K.1    Kowalski, B.R.2
  • 28
    • 14944349678 scopus 로고    scopus 로고
    • Ridge regression optimization using a harmonious approach
    • Forrester JB, Kalivas JH. Ridge regression optimization using a harmonious approach. J. Chemom. 2004; 18: 372-384.
    • (2004) J. Chemom. , vol.18 , pp. 372-384
    • Forrester, J.B.1    Kalivas, J.H.2
  • 29
    • 33846263077 scopus 로고    scopus 로고
    • Constrained regularization: Hybrid method for multivariate calibration
    • Shih W, Bechtel KL, Feld MS. Constrained regularization: Hybrid method for multivariate calibration. Anal. Chem. 2007; 79: 234-239.
    • (2007) Anal. Chem. , vol.79 , pp. 234-239
    • Shih, W.1    Bechtel, K.L.2    Feld, M.S.3
  • 30
    • 0000479247 scopus 로고    scopus 로고
    • Net analyte signal calculation in multivariate calibration
    • Lorber A, Faber K, Kowalski BR. Net analyte signal calculation in multivariate calibration. Anal. Chem. 1997; 69: 1620-1626.
    • (1997) Anal. Chem. , vol.69 , pp. 1620-1626
    • Lorber, A.1    Faber, K.2    Kowalski, B.R.3
  • 31
    • 0032402217 scopus 로고    scopus 로고
    • Efficient computation of net analyte signal vector in inverse multivariate calibration
    • Faber NM. Efficient computation of net analyte signal vector in inverse multivariate calibration. Anal. Chem. 1998; 70: 5108-5110.
    • (1998) Anal. Chem. , vol.70 , pp. 5108-5110
    • Faber, N.M.1
  • 32
    • 1042297610 scopus 로고    scopus 로고
    • Theory of net analyte signal vectors in inverse regression
    • Bro R, Andersen CM. Theory of net analyte signal vectors in inverse regression. J. Chemom. 2003; 17: 646-652.
    • (2003) J. Chemom. , vol.17 , pp. 646-652
    • Bro, R.1    Andersen, C.M.2
  • 34
    • 33847267364 scopus 로고    scopus 로고
    • Tikhonov regularization in standardized and general from for multivariate calibration with applications towards removing unwanted spectral artifacts
    • Stout F, Kalivas JH. Tikhonov regularization in standardized and general from for multivariate calibration with applications towards removing unwanted spectral artifacts. J. Chemom. 2006; 20: 22-33.
    • (2006) J. Chemom. , vol.20 , pp. 22-33
    • Stout, F.1    Kalivas, J.H.2
  • 35
    • 1042298892 scopus 로고    scopus 로고
    • Pareto calibration with built-in wavelength selection
    • Kalivas JH. Pareto calibration with built-in wavelength selection. Anal. Chim. Acta 2004; 505: 9-14.
    • (2004) Anal. Chim. Acta , vol.505 , pp. 9-14
    • Kalivas, J.H.1
  • 36
    • 78651388598 scopus 로고    scopus 로고
    • Spectral multivariate calibration with wavelength selection using variants of Tikhonov regularization
    • Ottaway J, Kalivas JH, Andries E. Spectral multivariate calibration with wavelength selection using variants of Tikhonov regularization. Appl. Spectrosc. 2010; 64: 1388-1395.
    • (2010) Appl. Spectrosc. , vol.64 , pp. 1388-1395
    • Ottaway, J.1    Kalivas, J.H.2    Andries, E.3
  • 37
    • 0001452365 scopus 로고
    • A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems
    • O'Leary DP, Simons JA. A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM J. Sci. Stat. Comput. 1981; 2: 474-489.
    • (1981) SIAM J. Sci. Stat. Comput. , vol.2 , pp. 474-489
    • O'Leary, D.P.1    Simons, J.A.2
  • 38
    • 0035537408 scopus 로고    scopus 로고
    • Choosing regularization parameters in iterative methods for ill-posed problems
    • Kilmer ME, O'Leary DP. Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl. 2001; 22: 1204-1221.
    • (2001) SIAM J. Matrix Anal. Appl. , vol.22 , pp. 1204-1221
    • Kilmer, M.E.1    O'Leary, D.P.2
  • 39
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard R. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970; 12: 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 40
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • Gorodnitsky IF, Rao BD. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 1997; 45: 600-616.
    • (1997) IEEE Trans. Signal Process. , vol.45 , pp. 600-616
    • Gorodnitsky, I.F.1    Rao, B.D.2
  • 41
    • 67650369751 scopus 로고    scopus 로고
    • Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
    • Li H, Liang Y, Xu Q, Cao D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009; 648: 77-84.
    • (2009) Anal. Chim. Acta , vol.648 , pp. 77-84
    • Li, H.1    Liang, Y.2    Xu, Q.3    Cao, D.4
  • 42
    • 78650309373 scopus 로고    scopus 로고
    • Adaptively preconditioned Krylov spaces to identify irrelevant predictors
    • Kondylis A, Whittaker J. Adaptively preconditioned Krylov spaces to identify irrelevant predictors. Chemom. Intell. Lab. Syst. 2010; 104: 205-213.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 205-213
    • Kondylis, A.1    Whittaker, J.2
  • 43
    • 85153994213 scopus 로고    scopus 로고
    • personnel communication, erik.andries@gmail.com.
    • Andries E. personnel communication, erik.andries@gmail.com.
    • Andries, E.1
  • 44
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R. Regression shrinkage and selection via the LASSO. J. Roy. Statist. Soc. B 1996; 58: 267-288.
    • (1996) J. Roy. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 45
    • 0000364765 scopus 로고
    • Robust modeling with erratic data
    • Claerbout JF, Muir F. Robust modeling with erratic data. Geophysics 1973; 38: 826-844.
    • (1973) Geophysics , vol.38 , pp. 826-844
    • Claerbout, J.F.1    Muir, F.2
  • 47
    • 0019390023 scopus 로고
    • Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution
    • Levy S, Fullager PK. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 1981; 46: 1235-1243.
    • (1981) Geophysics , vol.46 , pp. 1235-1243
    • Levy, S.1    Fullager, P.K.2
  • 48
    • 0008988926 scopus 로고
    • Linear inversion of band-limited reflection seismograms
    • Santosa F, Symes W. Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Stat. Comput. 1986; 7: 1307-1330.
    • (1986) SIAM J. Sci. Stat. Comput. , vol.7 , pp. 1307-1330
    • Santosa, F.1    Symes, W.2
  • 50
    • 21244436700 scopus 로고    scopus 로고
    • Performance of some variable selection methods when multicollinearity is present
    • Chong I, Jun C. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005; 78:103-112.
    • (2005) Chemom. Intell. Lab. Syst. , vol.78 , pp. 103-112
    • Chong, I.1    Jun, C.2
  • 51
    • 33846654921 scopus 로고    scopus 로고
    • Wavelength selection for multivariate calibration using Tikhonov regularization
    • Stout F, Kalivas JH, Héberger K. Wavelength selection for multivariate calibration using Tikhonov regularization. Appl. Spectrosc. 2007; 61: 85-95.
    • (2007) Appl. Spectrosc. , vol.61 , pp. 85-95
    • Stout, F.1    Kalivas, J.H.2    Héberger, K.3
  • 52
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank IE, Friedman JH. A statistical view of some chemometrics regression tools. Technometrics 1993; 35: 109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 53
    • 0034888651 scopus 로고    scopus 로고
    • Calibration with absolute shrinkage
    • Öjelund H, Madsen H, Thyregod P. Calibration with absolute shrinkage. J. Chemom. 2001; 15: 497-509.
    • (2001) J. Chemom. , vol.15 , pp. 497-509
    • Öjelund, H.1    Madsen, H.2    Thyregod, P.3
  • 54
    • 0036649051 scopus 로고    scopus 로고
    • Calibration with empirically weighted mean subset
    • Öjelund H, Madsen H, Thyregod P. Calibration with empirically weighted mean subset. Appl. Spectrosc. 2002; 56: 887-896.
    • (2002) Appl. Spectrosc. , vol.56 , pp. 887-896
    • Öjelund, H.1    Madsen, H.2    Thyregod, P.3
  • 56
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regressions: the bridge versus the LASSO
    • Fu WJ. Penalized regressions: the bridge versus the LASSO. J. Computnl. Graph. Statist. 1998; 7: 397-416.
    • (1998) J. Computnl. Graph. Statist. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 57
    • 23844457879 scopus 로고    scopus 로고
    • Least squares estimation with complexity penalties
    • van de Geer S. Least squares estimation with complexity penalties. Math. Meth. Statist. 2001; 10: 355-375.
    • (2001) Math. Meth. Statist. , vol.10 , pp. 355-375
    • van de Geer, S.1
  • 58
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 2001; 96: 1348-1360.
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 59
    • 34249109162 scopus 로고    scopus 로고
    • Evaluation of multivariate calibration using a Tikhonov regularization approach and the generalized pair-correlation method with non-linear data
    • Stout F, Kalivas JH. Evaluation of multivariate calibration using a Tikhonov regularization approach and the generalized pair-correlation method with non-linear data. Anal. Let. 2007; 40: 1227-1251.
    • (2007) Anal. Let. , vol.40 , pp. 1227-1251
    • Stout, F.1    Kalivas, J.H.2
  • 60
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive LASSO ad its oracle properties
    • Zou H. The adaptive LASSO ad its oracle properties. J. Am. Statist. Assoc. 2006; 101: 1418-1429.
    • (2006) J. Am. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 61
    • 85153984313 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted ℓ1 minimization. (accessed January 2012).
    • Candes EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted ℓ1 minimization. (accessed January 2012).
    • Candes, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 63
    • 77951083710 scopus 로고    scopus 로고
    • Impact of standardization sample designs on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer
    • Kunz MR, Ottaway J, Kalivas JH, Andries E. Impact of standardization sample designs on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer. J. Chemom. 2009; 24: 218-229.
    • (2009) J. Chemom. , vol.24 , pp. 218-229
    • Kunz, M.R.1    Ottaway, J.2    Kalivas, J.H.3    Andries, E.4
  • 64
    • 77951854153 scopus 로고    scopus 로고
    • Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization
    • Kunz MR, Kalivas JH, Andries E. Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization. Anal. Chem. 2010; 82: 3642-3649.
    • (2010) Anal. Chem. , vol.82 , pp. 3642-3649
    • Kunz, M.R.1    Kalivas, J.H.2    Andries, E.3
  • 65
    • 79953696252 scopus 로고    scopus 로고
    • Elastic net grouping variable selection combined with partial lest squares regression (EN-PLSR) for the analysis of strongly multi-collinear spectroscopic data
    • Fu GH, Xu QS, Li HD, Cao DS, Liang YZ. Elastic net grouping variable selection combined with partial lest squares regression (EN-PLSR) for the analysis of strongly multi-collinear spectroscopic data. Appl. Spectrosc. 2011; 65: 402-408.
    • (2011) Appl. Spectrosc. , vol.65 , pp. 402-408
    • Fu, G.H.1    Xu, Q.S.2    Li, H.D.3    Cao, D.S.4    Liang, Y.Z.5
  • 66
    • 80053384284 scopus 로고    scopus 로고
    • Improved variable reduction in partial least squares modeling based on predictive-property-ranked variables and adaption of partial least squares complexity
    • Andries JPM, Heyden YV, Buydens LMC. Improved variable reduction in partial least squares modeling based on predictive-property-ranked variables and adaption of partial least squares complexity. Anal. Chim. Acta 2011; 705: 292-305.
    • (2011) Anal. Chim. Acta , vol.705 , pp. 292-305
    • Andries, J.P.M.1    Heyden, Y.V.2    Buydens, L.M.C.3
  • 67
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J. Royal Statist. Soc. B 2005; 67: 301-320.
    • (2005) J. Royal Statist. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 69
    • 80053635996 scopus 로고    scopus 로고
    • Sparse partial least-squares regression and its applications to high-throughput data analysis
    • Lee D, Lee W, Pawitan Y. Sparse partial least-squares regression and its applications to high-throughput data analysis. Chemom. Intell. Lab. Syst. 2011; 109: 1-8.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 1-8
    • Lee, D.1    Lee, W.2    Pawitan, Y.3
  • 70
    • 2342442343 scopus 로고    scopus 로고
    • Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares
    • Huang X, Pan W, Park S, Han X, Miller LW, Hall J. Modeling the relationship between LVAD support time and gene expression changes in the human heart by penalized partial least squares. Bioinformatics 2004; 20: 888-894.
    • (2004) Bioinformatics , vol.20 , pp. 888-894
    • Huang, X.1    Pan, W.2    Park, S.3    Han, X.4    Miller, L.W.5    Hall, J.6
  • 71
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • Chun H, Keles S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J.R. Statist. Soc. B 2010; 72: 3-25.
    • (2010) J.R. Statist. Soc. B , vol.72 , pp. 3-25
    • Chun, H.1    Keles, S.2
  • 72
    • 68349114771 scopus 로고    scopus 로고
    • Calibration maintenance and transfer using Tikhonov regularization approaches
    • Kalivas JH, Siano GS, Andries E, Goicoechea HC. Calibration maintenance and transfer using Tikhonov regularization approaches. Appl. Spectrosc. 2009; 63: 800-809.
    • (2009) Appl. Spectrosc. , vol.63 , pp. 800-809
    • Kalivas, J.H.1    Siano, G.S.2    Andries, E.3    Goicoechea, H.C.4
  • 73
    • 79951730835 scopus 로고    scopus 로고
    • Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region
    • Kunz MR, Ottaway J, Kalivas JH, Georgiou CA, Mousdis GA. Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region. J. Agric. Food Chem. 2011; 59: 1051-1057.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 1051-1057
    • Kunz, M.R.1    Ottaway, J.2    Kalivas, J.H.3    Georgiou, C.A.4    Mousdis, G.A.5
  • 74
    • 84856078822 scopus 로고    scopus 로고
    • Updating a near-infrared multivariate calibration model formed with lab-prepared pharmaceutical tablet types to new tablet types in full production
    • Farrell JA, Higgins K, Kalivas JH. Updating a near-infrared multivariate calibration model formed with lab-prepared pharmaceutical tablet types to new tablet types in full production. J. Pharm. Biomed. Anal. 2012; 61: 114-121.
    • (2012) J. Pharm. Biomed. Anal. , vol.61 , pp. 114-121
    • Farrell, J.A.1    Higgins, K.2    Kalivas, J.H.3
  • 75
    • 0345211838 scopus 로고
    • Improving repeatability of NIR calibrations across instruments
    • Biston R, Bartiaux-Thill N (eds.). Agriculture Research Centre Publishing: Gembloux
    • Westerhaus MO. Improving repeatability of NIR calibrations across instruments. In Proceedings of the Third International Near Infrared Spectroscopy Conference. Biston R, Bartiaux-Thill N (eds.). Agriculture Research Centre Publishing: Gembloux, 1991; 671-674.
    • (1991) Proceedings of the Third International Near Infrared Spectroscopy Conference , pp. 671-674
    • Westerhaus, M.O.1
  • 76
    • 33745262163 scopus 로고    scopus 로고
    • Desensitizing models using covariance matrix transforms or counter-balanced distortion
    • DiFoggio R. Desensitizing models using covariance matrix transforms or counter-balanced distortion. J. Chemom. 2005; 19: 203-215.
    • (2005) J. Chemom. , vol.19 , pp. 203-215
    • DiFoggio, R.1
  • 77
    • 34948874082 scopus 로고    scopus 로고
    • Influencing models to improve their predictions of standard samples
    • DiFoggio R. Influencing models to improve their predictions of standard samples. J. Chemom. 2007; 21: 208-214.
    • (2007) J. Chemom. , vol.21 , pp. 208-214
    • DiFoggio, R.1
  • 78
    • 0037185468 scopus 로고    scopus 로고
    • Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off
    • Green RL, Kalivas JH. Graphical diagnostics for regression model determinations with consideration of the bias/variance trade-off. Chemom. Intell. Lab. Syst. 2002; 60: 173-188.
    • (2002) Chemom. Intell. Lab. Syst. , vol.60 , pp. 173-188
    • Green, R.L.1    Kalivas, J.H.2
  • 79
    • 34249328882 scopus 로고    scopus 로고
    • Impartial graphical comparison of multivariate calibration methods and the harmony/parsimony tradeoff
    • Stout F, Baines M, Kalivas JH. Impartial graphical comparison of multivariate calibration methods and the harmony/parsimony tradeoff. J. Chemom. 2006; 20: 464-475.
    • (2006) J. Chemom. , vol.20 , pp. 464-475
    • Stout, F.1    Baines, M.2    Kalivas, J.H.3
  • 80
    • 78149410163 scopus 로고    scopus 로고
    • Ensemble wavelet modeling for determination of wheat and gasoline properties by near and model infrared spectroscopy
    • Pinto LA, Galvão RKH, Araújo MCU. Ensemble wavelet modeling for determination of wheat and gasoline properties by near and model infrared spectroscopy. Anal. Chim. Acta 2010; 682: 37-47.
    • (2010) Anal. Chim. Acta , vol.682 , pp. 37-47
    • Pinto, L.A.1    Galvão, R.K.H.2    Araújo, M.C.U.3
  • 81
    • 79952134208 scopus 로고    scopus 로고
    • Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients
    • Gowen AA, Downey G, Esquerre C, O'Donnell CP. Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients. J. Chemom. 2011; 25: 375-381.
    • (2011) J. Chemom. , vol.25 , pp. 375-381
    • Gowen, A.A.1    Downey, G.2    Esquerre, C.3    O'Donnell, C.P.4
  • 82
    • 0026591475 scopus 로고
    • The H-principle in modeling with applications to chemometrics
    • Höskuldsson A. The H-principle in modeling with applications to chemometrics. Chemom. Intell. Lab. Syst. 1992; 14: 139-153.
    • (1992) Chemom. Intell. Lab. Syst. , vol.14 , pp. 139-153
    • Höskuldsson, A.1
  • 84
    • 32044449925 scopus 로고
    • Generalized crossvalidation as a method for choosing a good ridge parameter
    • Golub GH, Heath M, Wahba G. Generalized crossvalidation as a method for choosing a good ridge parameter. Technometrics 1979; 21: 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 85
    • 12344275554 scopus 로고    scopus 로고
    • Evaluation of basic algorithms for transferring quantitative multivariate calibrations between scanning grating and FT-IR spectrometers
    • Leion H, Folestad S, Josefson M, Sparén A. Evaluation of basic algorithms for transferring quantitative multivariate calibrations between scanning grating and FT-IR spectrometers. J. Pharm. Biomed. Anal. 2005; 37: 47-55.
    • (2005) J. Pharm. Biomed. Anal. , vol.37 , pp. 47-55
    • Leion, H.1    Folestad, S.2    Josefson, M.3    Sparén, A.4
  • 86
    • 33645071917 scopus 로고    scopus 로고
    • Transfer of NIR calibrations for pharmaceutical formulations between different instruments
    • Bergman EL, Brage H, Josefson M, Svensson O, Sparén A. Transfer of NIR calibrations for pharmaceutical formulations between different instruments. J. Pharm. Biomed. Anal. 2006; 41: 89-98.
    • (2006) J. Pharm. Biomed. Anal. , vol.41 , pp. 89-98
    • Bergman, E.L.1    Brage, H.2    Josefson, M.3    Svensson, O.4    Sparén, A.5
  • 87
    • 53649087292 scopus 로고    scopus 로고
    • Learning from Procrustes analysis to improve multivariate calibration
    • Kalivas JH. Learning from Procrustes analysis to improve multivariate calibration. J. Chemom. 2008; 22: 227-234.
    • (2008) J. Chemom. , vol.22 , pp. 227-234
    • Kalivas, J.H.1
  • 88
    • 0037282748 scopus 로고    scopus 로고
    • Centering and scaling in component analysis
    • Bro R, Smilde AK. Centering and scaling in component analysis. J. Chemom. 2003; 17: 16-33.
    • (2003) J. Chemom. , vol.17 , pp. 16-33
    • Bro, R.1    Smilde, A.K.2
  • 89
    • 0005267218 scopus 로고    scopus 로고
    • Local centering in multivariate calibration
    • Lorber A, Faber K, Kowalski BR. Local centering in multivariate calibration. J. Chemom. 1996; 10: 215-220.
    • (1996) J. Chemom. , vol.10 , pp. 215-220
    • Lorber, A.1    Faber, K.2    Kowalski, B.R.3
  • 90
    • 0001332997 scopus 로고
    • The effect of mean centering in prediction in multivariate calibration
    • Seasholtz MB, Kowalski BR. The effect of mean centering in prediction in multivariate calibration. J. Chemom. 1992; 6: 103-111.
    • (1992) J. Chemom. , vol.6 , pp. 103-111
    • Seasholtz, M.B.1    Kowalski, B.R.2
  • 91
    • 0033362665 scopus 로고    scopus 로고
    • Fundamentals of calibration transfer through Procrustes analysis
    • Anderson CE, Kalivas JH. Fundamentals of calibration transfer through Procrustes analysis. Appl. Spectrosc. 1999; 53: 1268-1276.
    • (1999) Appl. Spectrosc. , vol.53 , pp. 1268-1276
    • Anderson, C.E.1    Kalivas, J.H.2
  • 92
    • 0031699410 scopus 로고    scopus 로고
    • Comparison of two different approaches toward model transferability in NIR spectroscopy
    • Swierenga H, Haanstra WG, de Weijer AP, Buydens LMC. Comparison of two different approaches toward model transferability in NIR spectroscopy. Appl. Spectrosc. 1998; 52: 7-16.
    • (1998) Appl. Spectrosc. , vol.52 , pp. 7-16
    • Swierenga, H.1    Haanstra, W.G.2    de Weijer, A.P.3    Buydens, L.M.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.