메뉴 건너뛰기




Volumn 92, Issue , 2018, Pages 380-389

Energy consumption forecasting based on Elman neural networks with evolutive optimization

Author keywords

Energy efficiency; Evolutionary algorithm; Neural networks; Time series forecasting

Indexed keywords

ENERGY CONSERVATION; ENERGY UTILIZATION; EVOLUTIONARY ALGORITHMS; FORECASTING; GENETIC ALGORITHMS; INTELLIGENT SYSTEMS; NEURAL NETWORKS; OPTIMIZATION;

EID: 85030686265     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2017.09.059     Document Type: Article
Times cited : (163)

References (55)
  • 2
    • 85027151564 scopus 로고    scopus 로고
    • Improving Renewable Energy Forecasting with a Grid of Numerical Weather Predictions
    • 1–1.
    • Andrade, J.R., Bessa, R.J., Improving Renewable Energy Forecasting with a Grid of Numerical Weather Predictions. IEEE Transactions on Sustainable Energy, 8(4), 2017 1–1. http://dx.doi.org/10.1109/TSTE.2017.2694340.
    • (2017) IEEE Transactions on Sustainable Energy , vol.8 , Issue.4
    • Andrade, J.R.1    Bessa, R.J.2
  • 6
    • 84870828103 scopus 로고    scopus 로고
    • Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts
    • Basbagill, J., Flager, F., Lepech, M., Fischer, M., Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment 60 (2013), 81–92 http://dx.doi.org/10.1016/j.buildenv.2012.11.009.
    • (2013) Building and Environment , vol.60 , pp. 81-92
    • Basbagill, J.1    Flager, F.2    Lepech, M.3    Fischer, M.4
  • 7
    • 79151472440 scopus 로고    scopus 로고
    • Prediction of building energy needs in early stage of design by using ANFIS
    • Bektas Ekici, B., Aksoy, U.T., Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications 38 (2011), 5352–5358 http://dx.doi.org/10.1016/j.eswa.2010.10.021.
    • (2011) Expert Systems with Applications , vol.38 , pp. 5352-5358
    • Bektas Ekici, B.1    Aksoy, U.T.2
  • 8
    • 84952659868 scopus 로고    scopus 로고
    • Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study
    • Benedetti, M., Cesarotti, V., Introna, V., Serranti, J., Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study. Applied Energy 165 (2016), 60–71 http://dx.doi.org/10.1016/j.apenergy.2015.12.066.
    • (2016) Applied Energy , vol.165 , pp. 60-71
    • Benedetti, M.1    Cesarotti, V.2    Introna, V.3    Serranti, J.4
  • 9
    • 85030699221 scopus 로고    scopus 로고
    • An Artificial Intelligence ATM forecasting system for Hybrid Neural Networks
    • Bhandari, R., Gill, J., An Artificial Intelligence ATM forecasting system for Hybrid Neural Networks. International Journal of Computer Applications 133 (2016), 13–16 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.734.7389&rep=rep1&type=pdf.
    • (2016) International Journal of Computer Applications , vol.133 , pp. 13-16
    • Bhandari, R.1    Gill, J.2
  • 10
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • Blanco, A., Delgado, M., Pegalajar, M.C., A real-coded genetic algorithm for training recurrent neural networks. Neural Networks 14 (2001), 93–105 http://dx.doi.org/10.1016/S0893-6080(00)00081-2.
    • (2001) Neural Networks , vol.14 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 11
    • 0003691602 scopus 로고    scopus 로고
    • Time series: theory and methods
    • Springer Science & Business Media.
    • Brockwell, P.J., Davis, R.A., Time series: theory and methods. 2013, Springer Science & Business Media. http://dx.doi.org/10.1007/978-1-4419-0320-4.
    • (2013)
    • Brockwell, P.J.1    Davis, R.A.2
  • 12
    • 0022215834 scopus 로고
    • Comparative models for electrical load forecasting
    • John Wiley and Sons Inc., New York, NY
    • Bunn, D., Farmer, E.D., Comparative models for electrical load forecasting. 1985, John Wiley and Sons Inc., New York, NY.
    • (1985)
    • Bunn, D.1    Farmer, E.D.2
  • 13
    • 84939825549 scopus 로고    scopus 로고
    • Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, México
    • Cadenas, E., Rivera, W., Campos-Amezcua, R., Cadenas, R., Wind speed forecasting using the NARX model, case: La Mata, Oaxaca, México. Neural Computing and Applications 27 (2016), 2417–2428 http://dx.doi.org/10.1007/s00521-015-2012-y.
    • (2016) Neural Computing and Applications , vol.27 , pp. 2417-2428
    • Cadenas, E.1    Rivera, W.2    Campos-Amezcua, R.3    Cadenas, R.4
  • 14
    • 33646875753 scopus 로고    scopus 로고
    • Feature-based image registration by means of the CHC evolutionary algorithm
    • Cordón, O., Damas, S., Santamaría, J., Feature-based image registration by means of the CHC evolutionary algorithm. Image and Vision Computing 24 (2006), 525–533 http://dx.doi.org/10.1016/j.imavis.2006.02.002.
    • (2006) Image and Vision Computing , vol.24 , pp. 525-533
    • Cordón, O.1    Damas, S.2    Santamaría, J.3
  • 15
    • 85015264938 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization for Elman recurrent neural networks, applied to time series prediction
    • Cuéllar, M., Delgado, M., Pegalajar, M., Multiobjective evolutionary optimization for Elman recurrent neural networks, applied to time series prediction. Fuzzy Economic Review 10 (2005), 17–33 http://search.proquest.com/docview/228956321.
    • (2005) Fuzzy Economic Review , vol.10 , pp. 17-33
    • Cuéllar, M.1    Delgado, M.2    Pegalajar, M.3
  • 17
    • 84973111565 scopus 로고    scopus 로고
    • Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns
    • Chou, J.-S., Ngo, N.-T., Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Applied Energy 177 (2016), 751–770 http://dx.doi.org/10.1016/j.apenergy.2016.05.074.
    • (2016) Applied Energy , vol.177 , pp. 751-770
    • Chou, J.-S.1    Ngo, N.-T.2
  • 19
    • 84855647411 scopus 로고    scopus 로고
    • Evolutionary training for dynamical recurrent neural networks: An application in finantial time series prediction
    • Delgado, M., Pegalajar, M.C., Cuéllar, M.P., Evolutionary training for dynamical recurrent neural networks: An application in finantial time series prediction. Mathware and Soft Computing 13 (2006), 89–110 http://eudml.org/doc/41874.
    • (2006) Mathware and Soft Computing , vol.13 , pp. 89-110
    • Delgado, M.1    Pegalajar, M.C.2    Cuéllar, M.P.3
  • 20
    • 33646698452 scopus 로고    scopus 로고
    • Memetic evolutionary training for recurrent neural networks: An application to time-series prediction
    • Delgado, M., Pegalajar, M.C., Cuéllar, M.P., Memetic evolutionary training for recurrent neural networks: An application to time-series prediction. Expert Systems 23 (2006), 99–114 http://dx.doi.org/10.1111/j.1468-0394.2006.00327.x.
    • (2006) Expert Systems , vol.23 , pp. 99-114
    • Delgado, M.1    Pegalajar, M.C.2    Cuéllar, M.P.3
  • 22
    • 85030717359 scopus 로고    scopus 로고
    • Probabilistic fuzzy Time series method based on artificial neural network
    • Egrioglu, E., Bas, E., Aladag, C.H., Yolcu, U., Probabilistic fuzzy Time series method based on artificial neural network. American Journal of Intelligent Systems 6 (2016), 42–47 http://dx.doi.org/10.5923/j.ajis.20160602.02.
    • (2016) American Journal of Intelligent Systems , vol.6 , pp. 42-47
    • Egrioglu, E.1    Bas, E.2    Aladag, C.H.3    Yolcu, U.4
  • 24
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L., Finding structure in time. Cognitive Science 14 (1990), 179–211 http://dx.doi.org/10.1207/s15516709cog1402_1.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 25
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination
    • Gregory J.E R. Elsevier Bloomington Campus, Indiana, USA
    • Eshelman, L.J., The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. Gregory J.E, R., (eds.) Foundations of genetic algorithms, Volume 1, 1991, Elsevier, Bloomington Campus, Indiana, USA, 265–283 http://dx.doi.org/10.1016/B978-0-08-050684-5.50020-3.
    • (1991) Foundations of genetic algorithms , vol.1 , pp. 265-283
    • Eshelman, L.J.1
  • 26
    • 84919389078 scopus 로고    scopus 로고
    • Challenges of big data analysis
    • Fan, J., Han, F., Liu, H., Challenges of big data analysis. National Science Review 1 (2014), 293–314 http://dx.doi.org/10.1093/nsr/nwt032.
    • (2014) National Science Review , vol.1 , pp. 293-314
    • Fan, J.1    Han, F.2    Liu, H.3
  • 27
    • 84937129833 scopus 로고    scopus 로고
    • Predictive models for building's energy consumption: An Artificial Neural Network (ANN) approach
    • Ferlito, S., Atrigna, M., Graditi, G., Vito, S.D., Salvato, M., Buonanno, A., Predictive models for building's energy consumption: An Artificial Neural Network (ANN) approach. 2015 XVIII AISEM Annual Conference, 2015, 1–4 http://dx.doi.org/10.1109/AISEM.2015.7066836.
    • (2015) 2015 XVIII AISEM Annual Conference , pp. 1-4
    • Ferlito, S.1    Atrigna, M.2    Graditi, G.3    Vito, S.D.4    Salvato, M.5    Buonanno, A.6
  • 28
    • 84925855723 scopus 로고    scopus 로고
    • Regression analysis for prediction of residential energy consumption
    • Fumo, N., Rafe Biswas, M.A., Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews 47 (2015), 332–343 http://dx.doi.org/10.1016/j.rser.2015.03.035.
    • (2015) Renewable and Sustainable Energy Reviews , vol.47 , pp. 332-343
    • Fumo, N.1    Rafe Biswas, M.A.2
  • 29
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T., Menhaj, M.B., Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5 (1994), 989–993 http://dx.doi.org/10.1109/72.329697.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 30
    • 84956614068 scopus 로고    scopus 로고
    • An Efficient genetic algorithm for optimization Problems with time-consuming fitness Evaluation
    • Han, X., Liang, Y., Li, Z., Li, G., Wu, X., Wang, B., An Efficient genetic algorithm for optimization Problems with time-consuming fitness Evaluation. International Journal of Computational Methods, 12, 2015, 1350106 http://dx.doi.org/10.1142/s0219876213501065.
    • (2015) International Journal of Computational Methods , vol.12
    • Han, X.1    Liang, Y.2    Li, Z.3    Li, G.4    Wu, X.5    Wang, B.6
  • 31
    • 84960919073 scopus 로고    scopus 로고
    • Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles
    • Ibrahim, M., Jemei, S., Wimmer, G., Hissel, D., Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles. Electric Power Systems Research 136 (2016), 262–269 http://dx.doi.org/10.1016/j.epsr.2016.03.005.
    • (2016) Electric Power Systems Research , vol.136 , pp. 262-269
    • Ibrahim, M.1    Jemei, S.2    Wimmer, G.3    Hissel, D.4
  • 32
    • 84971370820 scopus 로고    scopus 로고
    • Transition to sustainable building. Strategies and opportunities to 2050
    • International Energy Agency. Transition to sustainable building. Strategies and opportunities to 2050. http://www.iea.org/publications/freepublications/publication/transition-to-sustainablebuildings.html, 2013.
    • (2013)
  • 33
    • 84937403361 scopus 로고    scopus 로고
    • An automated BIM model to conceptually design, analyze, simulate, and assess sustainable building projects
    • Jalaei, F., Jrade, A., An automated BIM model to conceptually design, analyze, simulate, and assess sustainable building projects. Journal of Construction Engineering, 2014, 2014, 21 http://dx.doi.org/10.1155/2014/672896.
    • (2014) Journal of Construction Engineering , vol.2014 , pp. 21
    • Jalaei, F.1    Jrade, A.2
  • 34
    • 77956729294 scopus 로고    scopus 로고
    • Serial Order: A parallel distributed processing approach
    • Jordan, M.I., Serial Order: A parallel distributed processing approach. Advances in Psychology 121 (1997), 471–495 http://dx.doi.org/10.1016/S0166-4115(97)80111-2.
    • (1997) Advances in Psychology , vol.121 , pp. 471-495
    • Jordan, M.I.1
  • 35
    • 0001829246 scopus 로고
    • Introduction to grey system theory
    • Julong, D., Introduction to grey system theory. The Journal of Grey System 1 (1989), 1–24 https://pdfs.semanticscholar.org/3013/67cf1d3f0aa5248a5b8a9ffa4813ef861620.pdf.
    • (1989) The Journal of Grey System , vol.1 , pp. 1-24
    • Julong, D.1
  • 36
    • 85019945402 scopus 로고    scopus 로고
    • Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform
    • Kanarachos, S., Christopoulos, S.-R.G., Chroneos, A., Fitzpatrick, M.E., Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. Expert Systems with Applications 85 (2017), 292–304 http://dx.doi.org/10.1016/j.eswa.2017.04.028.
    • (2017) Expert Systems with Applications , vol.85 , pp. 292-304
    • Kanarachos, S.1    Christopoulos, S.-R.G.2    Chroneos, A.3    Fitzpatrick, M.E.4
  • 37
    • 85018441550 scopus 로고    scopus 로고
    • Time series analysis and prediction of electricity consumption of health care institution using ARIMA model
    • K. Deep Bansal J.C. Das K.N. Lal A.K. Garg H. Nagar A.K. M. Pant Springer Singapore Singapore
    • Kaur, H., Ahuja, S., Time series analysis and prediction of electricity consumption of health care institution using ARIMA model. Deep, K., Bansal, J.C., Das, K.N., Lal, A.K., Garg, H., Nagar, A.K., Pant, M., (eds.) Proceedings of sixth international conference on soft computing for problem Solving: SocProS 2016, Volume 2, 2017, Springer Singapore, Singapore, 347–358 http://dx.doi.org/10.1007/978-981-10-3325-4_35.
    • (2017) Proceedings of sixth international conference on soft computing for problem Solving: SocProS 2016 , vol.2 , pp. 347-358
    • Kaur, H.1    Ahuja, S.2
  • 38
    • 84956665708 scopus 로고    scopus 로고
    • A comparison of energy consumption prediction models based on neural networks of a bioclimatic building
    • Khosravani, H., Castilla, M., Berenguel, M., Ruano, A., Ferreira, P., A comparison of energy consumption prediction models based on neural networks of a bioclimatic building. Energies, 9, 2016, 57 http://www.mdpi.com/1996-1073/9/1/57.
    • (2016) Energies , vol.9 , pp. 57
    • Khosravani, H.1    Castilla, M.2    Berenguel, M.3    Ruano, A.4    Ferreira, P.5
  • 39
    • 0035049111 scopus 로고    scopus 로고
    • On the “dimensionality curse” and the “self-similarity blessing&rdquo
    • Korn, F., Pagel, B.U., Faloutsos, C., On the “dimensionality curse” and the “self-similarity blessing&rdquo. IEEE Transactions on Knowledge and Data Engineering 13 (2001), 96–111 http://dx.doi.org/10.1109/69.908983.
    • (2001) IEEE Transactions on Knowledge and Data Engineering , vol.13 , pp. 96-111
    • Korn, F.1    Pagel, B.U.2    Faloutsos, C.3
  • 40
    • 0003882343 scopus 로고
    • Genetic Programming: on the programming of computers by means of natural selection
    • http___mitpress.mit.edu_books_genetic-programming, http://mitpress.mit.edu/books/genetic-programming., Massachusetts Institute of Technology., ISBN 0-262-11170-5. Printed and bound in the United States of America
    • Koza, J.R., Genetic Programming: on the programming of computers by means of natural selection. 1992, Massachusetts Institute of Technology. http://www.cs.bham.ac.uk/∼wbl/biblio/cache/bin/cache.php?koza:book, http___mitpress.mit.edu_books_genetic-programming, http://mitpress.mit.edu/books/genetic-programming. ISBN 0-262-11170-5. Printed and bound in the United States of America.
    • (1992)
    • Koza, J.R.1
  • 41
    • 84975297297 scopus 로고    scopus 로고
    • Comparative review of building commissioning regulation: A quality perspective
    • Lord, S.-F., Noye, S., Ure, J., Tennant, M.G., Fisk, D.J., Comparative review of building commissioning regulation: A quality perspective. Building Research & Information 44 (2016), 630–643 http://dx.doi.org/10.1080/09613218.2016.1181955.
    • (2016) Building Research & Information , vol.44 , pp. 630-643
    • Lord, S.-F.1    Noye, S.2    Ure, J.3    Tennant, M.G.4    Fisk, D.J.5
  • 42
    • 85018962403 scopus 로고    scopus 로고
    • Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China
    • Ma, X., Liu, Z., Application of a novel time-delayed polynomial grey model to predict the natural gas consumption in China. Journal of Computational and Applied Mathematics 324 (2017), 17–24 http://dx.doi.org/10.1016/j.cam.2017.04.020.
    • (2017) Journal of Computational and Applied Mathematics , vol.324 , pp. 17-24
    • Ma, X.1    Liu, Z.2
  • 44
    • 34548114179 scopus 로고    scopus 로고
    • Computational intelligence in time series forecasting
    • Springer. Heidelberg
    • Pallit, A., Popovic, D., Computational intelligence in time series forecasting. 2005, Springer., Heidelberg http://dx.doi.org/10.1007/1-84628-184-9.
    • (2005)
    • Pallit, A.1    Popovic, D.2
  • 45
    • 84881606002 scopus 로고    scopus 로고
    • On the recombination operator in the real-coded genetic algorithms
    • Picek, S., Jakobovic, D., Golub, M., On the recombination operator in the real-coded genetic algorithms. 2013 IEEE Congress on Evolutionary Computation, 2013, 3103–3110 http://dx.doi.org/10.1109/CEC.2013.6557948.
    • (2013) 2013 IEEE Congress on Evolutionary Computation , pp. 3103-3110
    • Picek, S.1    Jakobovic, D.2    Golub, M.3
  • 47
    • 84977654475 scopus 로고    scopus 로고
    • A hybrid model based on smooth transition periodic autoregressive and Elman artificial neural network for wind speed forecasting of the Hebei region in China
    • Qin, S., Wang, J., Wu, J., Zhao, G., A hybrid model based on smooth transition periodic autoregressive and Elman artificial neural network for wind speed forecasting of the Hebei region in China. International Journal of Green Energy 13 (2016), 595–607 http://dx.doi.org/10.1080/15435075.2014.961462.
    • (2016) International Journal of Green Energy , vol.13 , pp. 595-607
    • Qin, S.1    Wang, J.2    Wu, J.3    Zhao, G.4
  • 48
    • 84888313001 scopus 로고    scopus 로고
    • A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings
    • Rodger, J.A., A fuzzy nearest neighbor neural network statistical model for predicting demand for natural gas and energy cost savings in public buildings. Expert Systems with Applications 41 (2014), 1813–1829 http://dx.doi.org/10.1016/j.eswa.2013.08.080.
    • (2014) Expert Systems with Applications , vol.41 , pp. 1813-1829
    • Rodger, J.A.1
  • 49
    • 84988493757 scopus 로고    scopus 로고
    • Family houses energy consumption forecast tools for smart grid management
    • Garrido P. Soares F. Moreira A.P. Springer International Publishing Cham
    • Rodrigues, F., Cardeira, C., Calado, J.M.F., Melício, R., Family houses energy consumption forecast tools for smart grid management. Garrido, P., Soares, F., Moreira, A.P., (eds.) CONTROLO 2016: proceedings of the 12th portuguese conference on automatic control, 2017, Springer International Publishing, Cham, 691–699 http://dx.doi.org/10.1007/978-3-319-43671-5_58.
    • (2017) CONTROLO 2016: proceedings of the 12th portuguese conference on automatic control , pp. 691-699
    • Rodrigues, F.1    Cardeira, C.2    Calado, J.M.F.3    Melício, R.4
  • 50
    • 85126587420 scopus 로고    scopus 로고
    • An Application of non-linear autoregressive neural networks to predict energy consumption in public buildings
    • Ruiz, L.G.B., Cuellar, M.P., Delgado, M., Pegalajar, M.C., An Application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies, 9, 2016, 21 http://dx.doi.org/10.3390/en9090684.
    • (2016) Energies , vol.9 , pp. 21
    • Ruiz, L.G.B.1    Cuellar, M.P.2    Delgado, M.3    Pegalajar, M.C.4
  • 51
    • 84857652058 scopus 로고    scopus 로고
    • Short-term load forecasting of power systems by gene expression programming
    • Sadat Hosseini, S.S., Gandomi, A.H., Short-term load forecasting of power systems by gene expression programming. Neural Computing and Applications 21 (2012), 377–389 http://dx.doi.org/10.1007/s00521-010-0444-y.
    • (2012) Neural Computing and Applications , vol.21 , pp. 377-389
    • Sadat Hosseini, S.S.1    Gandomi, A.H.2
  • 53
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L., Accelerating the convergence of the back-propagation method. Biological Cybernetics 59 (1988), 257–263 http://dx.doi.org/10.1007/bf00332914.
    • (1988) Biological Cybernetics , vol.59 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.K.2    Rigler, A.K.3    Zink, W.T.4    Alkon, D.L.5
  • 54
    • 84990982087 scopus 로고    scopus 로고
    • Study of the monitored method of atomic clock data exception based on the model of dynamic neural network time series-NAR
    • Wang, X., Song, H., Bai, S., Zeng, T., Zhao, S., Wu, W., Li, W., Liu, Y., Study of the monitored method of atomic clock data exception based on the model of dynamic neural network time series-NAR. 2016 IEEE International Frequency Control Symposium (IFCS), 2016, 1–4 http://dx.doi.org/10.1109/FCS.2016.7546764.
    • (2016) 2016 IEEE International Frequency Control Symposium (IFCS) , pp. 1-4
    • Wang, X.1    Song, H.2    Bai, S.3    Zeng, T.4    Zhao, S.5    Wu, W.6    Li, W.7    Liu, Y.8
  • 55
    • 84969883888 scopus 로고    scopus 로고
    • Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique
    • Zhang, F., Deb, C., Lee, S.E., Yang, J., Shah, K.W., Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy and Buildings 126 (2016), 94–103 http://dx.doi.org/10.1016/j.enbuild.2016.05.028.
    • (2016) Energy and Buildings , vol.126 , pp. 94-103
    • Zhang, F.1    Deb, C.2    Lee, S.E.3    Yang, J.4    Shah, K.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.