-
1
-
-
85019100162
-
The power to change: Solar and wind cost reduction potential to 2025
-
Tech. Rep., Jun
-
M. Taylor, P. Ralon, and A. Ilas, "The power to change: Solar and wind cost reduction potential to 2025," International Renewable Energy Agency (IRENA), Tech. Rep., Jun. 2016.
-
(2016)
International Renewable Energy Agency (IRENA)
-
-
Taylor, M.1
Ralon, P.2
Ilas, A.3
-
2
-
-
84958254280
-
Solar forecasting: Methods, challenges, and performance
-
Nov./Dec
-
A. Tuohy et al., "Solar forecasting: Methods, challenges, and performance," IEEE Power Energy Mag., vol. 13, no. 6, pp. 50-59, Nov./Dec. 2015.
-
(2015)
IEEE Power Energy Mag.
, vol.13
, Issue.6
, pp. 50-59
-
-
Tuohy, A.1
-
3
-
-
84867985267
-
Regional wind power forecasting based on smoothing techniques, with application to the Spanish peninsular system
-
Nov
-
M. G. Lobo and I. Sánchez, "Regional wind power forecasting based on smoothing techniques, with application to the spanish peninsular system," IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1990-1997, Nov. 2012.
-
(2012)
IEEE Trans. Power Syst.
, vol.27
, Issue.4
, pp. 1990-1997
-
-
Lobo, M.G.1
Sánchez, I.2
-
4
-
-
84898018026
-
Optimal voltage control using inverters interfaced with PV systems considering forecast error in a distribution system
-
Apr
-
Z. Ziadi et al., "Optimal voltage control using inverters interfaced with PV systems considering forecast error in a distribution system." IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 682-690, Apr. 2014.
-
(2014)
IEEE Trans. Sustain. Energy
, vol.5
, Issue.2
, pp. 682-690
-
-
Ziadi, Z.1
-
5
-
-
70049096782
-
Online short-term solar power forecasting
-
Oct
-
P. Bacher, H. Madsen, and H. A. Nielsen, "Online short-term solar power forecasting," Sol. Energy, vol. 83, no. 10, pp. 1772-1783, Oct. 2009.
-
(2009)
Sol. Energy
, vol.83
, Issue.10
, pp. 1772-1783
-
-
Bacher, P.1
Madsen, H.2
Nielsen, H.A.3
-
6
-
-
66149107462
-
Irradiance forecasting for the power prediction of grid-connected photovoltaic systems
-
Mar
-
E. Lorenz, J. Hurka, D. Heinemann, and H. G. Beyer, "Irradiance forecasting for the power prediction of grid-connected photovoltaic systems," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 2, no. 1, pp. 2-10, Mar. 2009.
-
(2009)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.2
, Issue.1
, pp. 2-10
-
-
Lorenz, E.1
Hurka, J.2
Heinemann, D.3
Beyer, H.G.4
-
7
-
-
14344255817
-
Probabilistic wind power forecasts using local quantile regression
-
Jan.-Mar
-
J. B. Bremnes, "Probabilistic wind power forecasts using local quantile regression," Wind Energy, vol. 7, no. 1, pp. 47-54, Jan.-Mar. 2004.
-
(2004)
Wind Energy
, vol.7
, Issue.1
, pp. 47-54
-
-
Bremnes, J.B.1
-
8
-
-
84883215425
-
Time adaptive conditional kernel density estimation for wind power forecasting
-
Oct
-
R. Bessa, V. Miranda, A. Botterud, J. Wang, and E. M. Constantinescu, "Time adaptive conditional kernel density estimation for wind power forecasting," IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 660-669, Oct. 2012.
-
(2012)
IEEE Trans. Sustain. Energy
, vol.3
, Issue.4
, pp. 660-669
-
-
Bessa, R.1
Miranda, V.2
Botterud, A.3
Wang, J.4
Constantinescu, E.M.5
-
9
-
-
84919658679
-
A novel application of an analog ensemble for short-term wind power forecasting
-
Apr
-
S. Alessandrini, L. D. Monache, S. Sperati, and J. Nissen, "A novel application of an analog ensemble for short-term wind power forecasting," Renew. Energy, vol. 76, no. 768-781, Apr. 2015.
-
(2015)
Renew. Energy
, vol.76
, Issue.768-781
-
-
Alessandrini, S.1
Monache, L.D.2
Sperati, S.3
Nissen, J.4
-
10
-
-
84939814087
-
An analog ensemble for short-term probabilistic solar power forecast
-
Nov
-
S. Alessandrini, L. D. Monache, S. Sperati, and G. Cervone, "An analog ensemble for short-term probabilistic solar power forecast," Appl. Energy, vol. 157, pp. 95-110, Nov. 2015.
-
(2015)
Appl. Energy
, vol.157
, pp. 95-110
-
-
Alessandrini, S.1
Monache, L.D.2
Sperati, S.3
Cervone, G.4
-
11
-
-
84962349410
-
K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting
-
Jul.-Sep
-
Y. Zhang and J.Wang, "K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting," Int. J. Forecast., vol. 32, no. 3, pp. 1074-1080, Jul.-Sep. 2016.
-
(2016)
Int. J. Forecast.
, vol.32
, Issue.3
, pp. 1074-1080
-
-
Zhang, Y.1
Wang, J.2
-
12
-
-
84977650217
-
Review of photovoltaic power forecasting
-
Oct
-
J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. M. de Pison, and F. Antonanzas-Torres, "Review of photovoltaic power forecasting," Sol. Energy, vol. 136, pp. 78-111, Oct. 2016.
-
(2016)
Sol. Energy
, vol.136
, pp. 78-111
-
-
Antonanzas, J.1
Osorio, N.2
Escobar, R.3
Urraca, R.4
De Pison, F.M.5
Antonanzas-Torres, F.6
-
13
-
-
84892960976
-
Current status and future advances for wind speed and power forecasting
-
Mar
-
J. Jung and R. P. Broadwater, "Current status and future advances for wind speed and power forecasting," Renew. Sustain. Energy Rev., vol. 32, pp. 762-777, Mar. 2014.
-
(2014)
Renew. Sustain. Energy Rev.
, vol.32
, pp. 762-777
-
-
Jung, J.1
Broadwater, R.P.2
-
14
-
-
84937764904
-
Probabilistic solar power forecasting in smart grids using distributed information
-
Nov
-
R. Bessa, A. Trindade, C. Silva, and V. Miranda, "Probabilistic solar power forecasting in smart grids using distributed information," Int. J. Elect. Power Energy Syst., vol. 72, pp. 16-23, Nov. 2015.
-
(2015)
Int. J. Elect. Power Energy Syst.
, vol.72
, pp. 16-23
-
-
Bessa, R.1
Trindade, A.2
Silva, C.3
Miranda, V.4
-
15
-
-
84976475766
-
Compressive spatio-temporal forecasting of meteorological quantities and photovoltaic power
-
Jul
-
A. Tascikaraoglu et al., "Compressive spatio-temporal forecasting of meteorological quantities and photovoltaic power," IEEE Trans. Sustain. Energy, vol. 7, no. 3, pp. 1295-1305, Jul. 2016.
-
(2016)
IEEE Trans. Sustain. Energy
, vol.7
, Issue.3
, pp. 1295-1305
-
-
Tascikaraoglu, A.1
-
16
-
-
84988346596
-
LASSO vector autoregression structures for very short-term wind power forecasting
-
Apr
-
L. Cavalcante, R. J. Bessa, M. Reis, and J. Browell, "LASSO vector autoregression structures for very short-term wind power forecasting," Wind Energy, vol. 20, pp. 657-675, Apr. 2017.
-
(2017)
Wind Energy
, vol.20
, pp. 657-675
-
-
Cavalcante, L.1
Bessa, R.J.2
Reis, M.3
Browell, J.4
-
17
-
-
84929191655
-
Very-short-term probabilistic wind power forecasts by sparse vector autoregression
-
Mar
-
J. Dowell and P. Pinson, "Very-short-term probabilistic wind power forecasts by sparse vector autoregression," IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 763-770, Mar. 2016.
-
(2016)
IEEE Trans. Smart Grid
, vol.7
, Issue.2
, pp. 763-770
-
-
Dowell, J.1
Pinson, P.2
-
18
-
-
84870222552
-
Multivariate conditional parametric models for a spatio-temporal analysis of short-term wind power forecast errors
-
Warsaw, Poland, Apr
-
J. Tastu, P. Pinson, and H. Madsen, "Multivariate conditional parametric models for a spatio-temporal analysis of short-term wind power forecast errors," in Proc. Eur. Wind Energy Conf., Warsaw, Poland, Apr. 2010, pp. 1-9.
-
(2010)
Proc. Eur. Wind Energy Conf.
, pp. 1-9
-
-
Tastu, J.1
Pinson, P.2
Madsen, H.3
-
19
-
-
84903191929
-
A spatio-temporal analysis approach for short-term forecast of wind farm generation
-
Jul
-
M. He, L. Yang, J. Zhang, and V. Vittal, "A spatio-temporal analysis approach for short-term forecast of wind farm generation," IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1611-1622, Jul. 2014.
-
(2014)
IEEE Trans. Power Syst.
, vol.29
, Issue.4
, pp. 1611-1622
-
-
He, M.1
Yang, L.2
Zhang, J.3
Vittal, V.4
-
20
-
-
84960172423
-
Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond
-
Jul.-Sep
-
T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman, "Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond," Int. J. Forecast., vol. 32, no. 3, pp. 896-913, Jul.-Sep. 2016.
-
(2016)
Int. J. Forecast.
, vol.32
, Issue.3
, pp. 896-913
-
-
Hong, T.1
Pinson, P.2
Fan, S.3
Zareipour, H.4
Troccoli, A.5
Hyndman, R.J.6
-
21
-
-
84973143544
-
GEFCom2014: Probabilistic solar andwind power forecasting using a generalized additive tree ensemble approach
-
Jul.-Sep
-
G. I. Nagy, G. Barta, S. Kazi, G. Borbély, and G. Simon, "GEFCom2014: Probabilistic solar andwind power forecasting using a generalized additive tree ensemble approach," Int. J. Forecast., vol. 32, no. 3, pp. 1087-1093, Jul.-Sep. 2016.
-
(2016)
Int. J. Forecast.
, vol.32
, Issue.3
, pp. 1087-1093
-
-
Nagy, G.I.1
Barta, G.2
Kazi, S.3
Borbély, G.4
Simon, G.5
-
22
-
-
84961844695
-
Probabilistic gradient boosting machines for GEFCom2014 wind forecasting
-
Jul.-Sep
-
M. Landry, T. P. Erlinger, D. Patschke, and C. Varrichio, "Probabilistic gradient boosting machines for GEFCom2014 wind forecasting," Int. J. Forecast., vol. 32, no. 3, pp. 1061-1066, Jul.-Sep. 2016.
-
(2016)
Int. J. Forecast.
, vol.32
, Issue.3
, pp. 1061-1066
-
-
Landry, M.1
Erlinger, T.P.2
Patschke, D.3
Varrichio, C.4
-
23
-
-
84950134550
-
A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting
-
Jul.-Sep
-
J. Huang and M. Perry, "A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting," Int. J. Forecast., vol. 32, no. 3, pp. 1081-1086, Jul.-Sep. 2016.
-
(2016)
Int. J. Forecast.
, vol.32
, Issue.3
, pp. 1081-1086
-
-
Huang, J.1
Perry, M.2
-
24
-
-
84975733502
-
A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014
-
Jul.-Sep
-
R. Juban, H. Ohlsson, M. Maasoumy, L. Poirier, and J. Z. Kolter, "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014," Int. J. Forecast., vol. 32, no. 3, pp. 1094-1102, Jul.-Sep. 2016.
-
(2016)
Int. J. Forecast.
, vol.32
, Issue.3
, pp. 1094-1102
-
-
Juban, R.1
Ohlsson, H.2
Maasoumy, M.3
Poirier, L.4
Kolter, J.Z.5
-
25
-
-
85013791122
-
A high-accuracy wind power forecasting model
-
Mar
-
S. Fang and H.-D. Chiang, "A high-accuracy wind power forecasting model," IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1589-1590, Mar. 2017.
-
(2017)
IEEE Trans. Power Syst.
, vol.32
, Issue.2
, pp. 1589-1590
-
-
Fang, S.1
Chiang, H.-D.2
-
26
-
-
84925395797
-
PV power forecast using a nonparametric PV model
-
May
-
M. P. Almeida, O. Perpinán, and L. Narvarte, "PV power forecast using a nonparametric PV model," Sol. Energy, vol. 115, pp. 354-368, May 2015.
-
(2015)
Sol. Energy
, vol.115
, pp. 354-368
-
-
Almeida, M.P.1
Perpinán, O.2
Narvarte, L.3
-
27
-
-
84968739482
-
Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting
-
Sep
-
F. Davò, S. Alessandrini, S. Sperati, L. D. Monache, D. Airoldi, and M. T. Vespucci, "Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting," Sol. Energy, vol. 134, pp. 327-338, Sep. 2016.
-
(2016)
Sol. Energy
, vol.134
, pp. 327-338
-
-
Davò, F.1
Alessandrini, S.2
Sperati, S.3
Monache, L.D.4
Airoldi, D.5
Vespucci, M.T.6
-
28
-
-
77956444173
-
Wind power forecasting: State-of-The-art 2009
-
Lemont, IL, USA, Tech. Rep. ANL/DIS-10-1
-
C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann, "Wind power forecasting: State-of-the-art 2009," Argonne National Laboratory, Lemont, IL, USA, Tech. Rep. ANL/DIS-10-1, 2009.
-
(2009)
Argonne National Laboratory
-
-
Monteiro, C.1
Bessa, R.2
Miranda, V.3
Botterud, A.4
Wang, J.5
Conzelmann, G.6
-
29
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Lake Tahoe, NV, USA, 3-6 Dec
-
J. Snoek and H. Larochelle, "Practical Bayesian optimization of machine learning algorithms," in Proc. 26th Annu. Conf. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 3-6 Dec. 2012, pp. 2951-2959.
-
(2012)
Proc. 26th Annu. Conf. Neural Inf. Process. Syst.
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
-
30
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman, "Greedy function approximation: A gradient boosting machine," Ann. Statist., vol. 29, no. 5, pp. 1189-1232, 2001.
-
(2001)
Ann. Statist.
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
31
-
-
0003684449
-
-
Berlin, Germany: Springer, Jan
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin, Germany: Springer, Jan. 2013.
-
(2013)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
32
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
|