메뉴 건너뛰기




Volumn 402, Issue , 2017, Pages 691-699

Family houses energy consumption forecast tools for smart grid management

Author keywords

Artificial neural networks; Energy forecasting; Energy management; Gradient methods; Smart grids

Indexed keywords

AUTOMATION; ELECTRIC POWER TRANSMISSION NETWORKS; ELECTRIC UTILITIES; EMBEDDED SYSTEMS; ENERGY MANAGEMENT; ENERGY UTILIZATION; FORECASTING; GRADIENT METHODS; HOUSES; NEURAL NETWORKS; PROCESS CONTROL;

EID: 84988493757     PISSN: 18761100     EISSN: 18761119     Source Type: Book Series    
DOI: 10.1007/978-3-319-43671-5_58     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 1
    • 84952917814 scopus 로고    scopus 로고
    • A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm
    • Sofana, R.S., Ramesh, V.: A demand response modeling for residential consumers in smart grid environment using game theory based energy scheduling algorithm. Ain Shams Eng. J. (2016)
    • (2016) Ain Shams Eng. J
    • Sofana, R.S.1    Ramesh, V.2
  • 3
    • 84907500844 scopus 로고    scopus 로고
    • Demand side management using artificial neural networks in a smart grid environment. Renew. Sustain
    • Macedo, M.N.Q., Galo, J.J.M., de Almeida, L.A.L., de Lima, A.C.: Demand side management using artificial neural networks in a smart grid environment. Renew. Sustain. Energy Rev. 41, 128-133 (2015)
    • (2015) Energy Rev , vol.41 , pp. 128-133
    • Macedo, M.N.Q.1    Galo, J.J.M.2    De Almeida, L.A.L.3    De Lima, A.C.4
  • 4
    • 84923412468 scopus 로고    scopus 로고
    • The daily and hourly energy consumption and load forecasting using artificial neural network method: A case study using a set of 93 households in Portugal
    • Rodrigues, F., Cardeira, C., Calado, J.M.F.: The daily and hourly energy consumption and load forecasting using artificial neural network method: a case study using a set of 93 households in Portugal. Energy Procedia 62, 220-229 (2014)
    • (2014) Energy Procedia , vol.62 , pp. 220-229
    • Rodrigues, F.1    Cardeira, C.2    Calado, J.M.F.3
  • 5
    • 0242306123 scopus 로고    scopus 로고
    • Prediction of the time of room air temperature descending for heating systems in buildings. Build
    • Yang, I.H., Kim, K.W.: Prediction of the time of room air temperature descending for heating systems in buildings. Build. Environ. 39(1), 19-29 (2004)
    • (2004) Environ , vol.39 , Issue.1 , pp. 19-29
    • Yang, I.H.1    Kim, K.W.2
  • 7
    • 84937039833 scopus 로고    scopus 로고
    • Renewable energy devices and systems-state-of-the-art technology, research and development, challenges and future trends
    • Blaabjerg, F., Ionel, M.: Renewable energy devices and systems-state-of-the-art technology, research and development, challenges and future trends. Electr. Power Compon. Syst. 43(12), 1319-1328 (2015)
    • (2015) Electr. Power Compon. Syst , vol.43 , Issue.12 , pp. 1319-1328
    • Blaabjerg, F.1    Ionel, M.2
  • 8
    • 84966318758 scopus 로고    scopus 로고
    • Classification of new electricity customers based on surveys and smart metering data
    • Viegas, J.L., Vieira, S.M., Melicio, R., Mendes, V.M.F., Sousa, J.M.C.: Classification of new electricity customers based on surveys and smart metering data. Energy 107, 804-817 (2016)
    • (2016) Energy , vol.107 , pp. 804-817
    • Viegas, J.L.1    Vieira, S.M.2    Melicio, R.3    Mendes, V.M.F.4    Sousa, J.M.C.5
  • 9
    • 83755196114 scopus 로고    scopus 로고
    • Cyber-physical intelligence in the context of power systems
    • Ramos, C., Vale, Z., Faria, L.: Cyber-physical intelligence in the context of power systems. Future Gener. Inf. Technol. 7105, 19-29 (2011)
    • (2011) Future Gener. Inf. Technol , vol.7105 , pp. 19-29
    • Ramos, C.1    Vale, Z.2    Faria, L.3
  • 10
    • 83655197745 scopus 로고    scopus 로고
    • Intelligent behavior in a cyber-ambient training system for control center operators
    • Faria, L., Silva, A., Ramos, C., Vale, Z., Marques, A.: Intelligent behavior in a cyber-ambient training system for control center operators. Proc. ISAP 1-6 (2011)
    • (2011) Proc. ISAP , pp. 1-6
    • Faria, L.1    Silva, A.2    Ramos, C.3    Vale, Z.4    Marques, A.5
  • 12
    • 84926066901 scopus 로고    scopus 로고
    • Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: Smart grid context tool
    • Seixas, M., Melício, R., Mendes, V.M.F.: Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: smart grid context tool. Energy Convers. Manag. 97, 140-153 (2015)
    • (2015) Energy Convers. Manag , vol.97 , pp. 140-153
    • Seixas, M.1    Melício, R.2    Mendes, V.M.F.3
  • 13
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • Hippert, H., Pedreira, C., Souza, R.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44-55 (2001)
    • (2001) IEEE Trans. Power Syst , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.1    Pedreira, C.2    Souza, R.3
  • 14
    • 2942647905 scopus 로고    scopus 로고
    • A hierarchical neural model in short-term load forecasting
    • Carpinteiro, O., Reis, A., Silva, A.: A hierarchical neural model in short-term load forecasting. Appl. Soft Comput. 4(4), 405-412 (2004)
    • (2004) Appl. Soft Comput , vol.4 , Issue.4 , pp. 405-412
    • Carpinteiro, O.1    Reis, A.2    Silva, A.3
  • 15
    • 0023563676 scopus 로고
    • Short-term load forecasting
    • Gross, G., Galiana, F.: Short-term load forecasting. Proc. IEEE 75(12), 1558-1573 (1987)
    • (1987) Proc. IEEE , vol.75 , Issue.12 , pp. 1558-1573
    • Gross, G.1    Galiana, F.2
  • 16
    • 84856296455 scopus 로고    scopus 로고
    • Short-term load forecasting with exponentially weighted methods
    • Taylor, J.: Short-term load forecasting with exponentially weighted methods. IEEE Trans. Power Syst. 27(1), 458-464 (2012)
    • (2012) IEEE Trans. Power Syst , vol.27 , Issue.1 , pp. 458-464
    • Taylor, J.1
  • 19
    • 0036756215 scopus 로고    scopus 로고
    • Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods
    • Saini, L., Soni, M.: Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods. IEE Proc.-Gener. Transm. Distrib. 149(5), 578-584 (2002)
    • (2002) IEE Proc.-Gener. Transm. Distrib , vol.149 , Issue.5 , pp. 578-584
    • Saini, L.1    Soni, M.2
  • 20
    • 84988463773 scopus 로고    scopus 로고
    • Artificial neural networks application to boolean input systems control
    • Holderbaum, W., Canart, R., Borne, P.: Artificial neural networks application to boolean input systems control. Stud. Inf. Control 8, 107-120 (1999)
    • (1999) Stud. Inf. Control , vol.8 , pp. 107-120
    • Holderbaum, W.1    Canart, R.2    Borne, P.3
  • 23
    • 0017949075 scopus 로고
    • Design and testing of a generalized reduced gradient code for nonlinear programming
    • Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M.: Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Trans. Math. Softw. 4(1), 34-50 (1978)
    • (1978) ACM Trans. Math. Softw , vol.4 , Issue.1 , pp. 34-50
    • Lasdon, L.S.1    Waren, A.D.2    Jain, A.3    Ratner, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.