메뉴 건너뛰기




Volumn 9, Issue 1, 2016, Pages

A comparison of energy consumption prediction models based on neural networks of a bioclimatic building

Author keywords

Data selection; Electric power demand; Multi objective genetic algorithm (MOGA); Neural networks; Predictive model

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUILDINGS; ELECTRIC POWER UTILIZATION; ENERGY CONSERVATION; ENERGY POLICY; GENETIC ALGORITHMS; NEURAL NETWORKS; SOLAR ENERGY;

EID: 84956665708     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en9010057     Document Type: Article
Times cited : (93)

References (56)
  • 1
    • 37349028760 scopus 로고    scopus 로고
    • A review on buildings energy consumption information
    • Perez-Lombard, L., Ortiz, J., Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394-398.
    • (2008) Energy Build. , vol.40 , pp. 394-398
    • Perez-Lombard, L.1    Ortiz, J.2    Pout, C.3
  • 2
    • 84915821869 scopus 로고    scopus 로고
    • A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)
    • Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843-862.
    • (2015) Renew. Sustain. Energy Rev. , vol.43 , pp. 843-862
    • Nejat, P.1    Jomehzadeh, F.2    Taheri, M.M.3    Gohari, M.4    Majid, M.Z.A.5
  • 3
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • Zhao, H.-X., Magoules, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586-3592.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 3586-3592
    • Zhao, H.-X.1    Magoules, F.2
  • 4
    • 34547660341 scopus 로고    scopus 로고
    • Model-based fault detection and diagnosis of HVAC systems using support vector machine method
    • Liang, J., Du, R. Model-based fault detection and diagnosis of HVAC systems using support vector machine method. Int. J. Refrig. 2007, 30, 1104-1114.
    • (2007) Int. J. Refrig. , vol.30 , pp. 1104-1114
    • Liang, J.1    Du, R.2
  • 5
    • 84855292182 scopus 로고    scopus 로고
    • Energy models for demand forecasting-A review
    • Suganthi, L., Samuel, A.A. Energy models for demand forecasting-A review. Renew. Sustain. Energy Rev. 2012, 16, 1223-1240.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , pp. 1223-1240
    • Suganthi, L.1    Samuel, A.A.2
  • 7
    • 0028481466 scopus 로고
    • Bioclimatic architecture
    • Gallo, C. Bioclimatic architecture. Renew. Energy 1994, 5, 1021-1027.
    • (1994) Renew. Energy , vol.5 , pp. 1021-1027
    • Gallo, C.1
  • 9
    • 79953173522 scopus 로고    scopus 로고
    • Bioclimatic design of buildings considering heating requirements in Italian climatic conditions
    • Albatici, R., Passerini, F. Bioclimatic design of buildings considering heating requirements in Italian climatic conditions. A simplified approach. Build. Environ. 2011, 46, 1624-1631.
    • (2011) A simplified approach. Build. Environ. , vol.46 , pp. 1624-1631
    • Albatici, R.1    Passerini, F.2
  • 10
    • 78651087929 scopus 로고    scopus 로고
    • Role of renewable energy sources in environmental protection: A review
    • Panwar, N.L., Kaushik, S.C., Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513-1524.
    • (2011) Renew. Sustain. Energy Rev. , vol.15 , pp. 1513-1524
    • Panwar, N.L.1    Kaushik, S.C.2    Kothari, S.3
  • 11
    • 84948695282 scopus 로고    scopus 로고
    • Development of renewable energy in Australia and China: A comparison of policies and status
    • Hua, Y., Oliphant, M., Hu, E.J. Development of renewable energy in Australia and China: A comparison of policies and status. Renew. Energy 2016, 85, 1044-1051.
    • (2016) Renew. Energy , vol.85 , pp. 1044-1051
    • Hua, Y.1    Oliphant, M.2    Hu, E.J.3
  • 12
    • 84938255142 scopus 로고    scopus 로고
    • Renewable energy policy framework and bioenergy contribution in the European Union-An overview from National Renewable Energy Action Plans and Progress Reports
    • Scarlat, N., Dallemand, J.-F., Monforti-Ferrario, F., Banja, M., Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union-An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969-985.
    • (2015) Renew. Sustain. Energy Rev. , vol.51 , pp. 969-985
    • Scarlat, N.1    Dallemand, J.-F.2    Monforti-Ferrario, F.3    Banja, M.4    Motola, V.5
  • 14
    • 84890278566 scopus 로고    scopus 로고
    • A review on the basics of building energy estimation
    • Fumo, N. A review on the basics of building energy estimation. Renew. Sustain. Energy Rev. 2014, 31, 53-60.
    • (2014) Renew. Sustain. Energy Rev. , vol.31 , pp. 53-60
    • Fumo, N.1
  • 15
    • 64549099947 scopus 로고    scopus 로고
    • Artificial neural networks in energy applications in buildings
    • Kalogirou, S.A. Artificial neural networks in energy applications in buildings. Int. J. Low Carbon Technol. 2006, 1, 201-216.
    • (2006) Int. J. Low Carbon Technol. , vol.1 , pp. 201-216
    • Kalogirou, S.A.1
  • 16
    • 84875690842 scopus 로고    scopus 로고
    • State of the art in building modelling and energy performances prediction: A review
    • Foucquier, A., Robert, S., Suard, F., Stephan, L., Jay, A. State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272-288.
    • (2013) Renew. Sustain. Energy Rev. , vol.23 , pp. 272-288
    • Foucquier, A.1    Robert, S.2    Suard, F.3    Stephan, L.4    Jay, A.5
  • 17
    • 84905395972 scopus 로고    scopus 로고
    • A prediction model based on neural networks for the energy consumption of a bioclimatic building
    • Mena, R., Rodríguez, F., Castilla, M., Arahal, M.R. A prediction model based on neural networks for the energy consumption of a bioclimatic building. Energy Build. 2014, 82, 142-155.
    • (2014) Energy Build. , vol.82 , pp. 142-155
    • Mena, R.1    Rodríguez, F.2    Castilla, M.3    Arahal, M.R.4
  • 18
    • 0035324636 scopus 로고    scopus 로고
    • Computer-aided building energy analysis techniques
    • Al-Homoud, M.S. Computer-aided building energy analysis techniques. Build. Environ. 2001, 36, 421-433.
    • (2001) Build. Environ. , vol.36 , pp. 421-433
    • Al-Homoud, M.S.1
  • 19
    • 31444445721 scopus 로고    scopus 로고
    • Simplified building model for transient thermal performance estimation using GA-based parameter identification
    • Wang, S.W., Xu, X.H. Simplified building model for transient thermal performance estimation using GA-based parameter identification. Int. J. Therm. Sci. 2006, 45, 419-432.
    • (2006) Int. J. Therm. Sci. , vol.45 , pp. 419-432
    • Wang, S.W.1    Xu, X.H.2
  • 20
    • 84925541167 scopus 로고    scopus 로고
    • Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach
    • Lu, X., Lu, T., Kibert, C.J., Viljanen, M. Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach. Appl. Energy 2015, 144, 261-275.
    • (2015) Appl. Energy , vol.144 , pp. 261-275
    • Lu, X.1    Lu, T.2    Kibert, C.J.3    Viljanen, M.4
  • 21
    • 84994791902 scopus 로고    scopus 로고
    • Statistical modeling for real domestic hot water consumption forecasting
    • Lomet, A., Suard, F., Cheze, D. Statistical modeling for real domestic hot water consumption forecasting. Energy Procedia 2015, 70, 379-387.
    • (2015) Energy Procedia , vol.70 , pp. 379-387
    • Lomet, A.1    Suard, F.2    Cheze, D.3
  • 22
    • 84908384776 scopus 로고    scopus 로고
    • Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems
    • Ma, Z., Li, H., Sun, Q., Wang, C., Yan, A., Starfelt, F. Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems. Energy Build. 2014, 85, 464-472.
    • (2014) Energy Build. , vol.85 , pp. 464-472
    • Ma, Z.1    Li, H.2    Sun, Q.3    Wang, C.4    Yan, A.5    Starfelt, F.6
  • 23
    • 84925855723 scopus 로고    scopus 로고
    • Regression analysis for prediction of residential energy consumption
    • Fumo, N., Biswas, M.A.R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 2015, 47, 332-343.
    • (2015) Renew. Sustain. Energy Rev. , vol.47 , pp. 332-343
    • Fumo, N.1    Biswas, M.A.R.2
  • 24
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • Neto, A.H., Fiorelli, F.A.S. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build. 2008, 40, 2169-2176.
    • (2008) Energy Build. , vol.40 , pp. 2169-2176
    • Neto, A.H.1    Fiorelli, F.A.S.2
  • 25
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • Aydinalp-Koksal, M., Ugursal, V.I. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl. Energy 2008, 85, 271-296.
    • (2008) Appl. Energy , vol.85 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 27
    • 80054796723 scopus 로고    scopus 로고
    • Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study
    • Li, K., Su, H., Chu, J. Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study. Energy Build. 2011, 43, 2893-2899.
    • (2011) Energy Build. , vol.43 , pp. 2893-2899
    • Li, K.1    Su, H.2    Chu, J.3
  • 28
    • 33646870136 scopus 로고    scopus 로고
    • Modeling and predicting building's energy use with artificial neural networks: Methods and results
    • Karatasou, S., Santamouris, M., Geros, V. Modeling and predicting building's energy use with artificial neural networks: Methods and results. Energy Build. 2006, 38, 949-958.
    • (2006) Energy Build. , vol.38 , pp. 949-958
    • Karatasou, S.1    Santamouris, M.2    Geros, V.3
  • 29
    • 84919800700 scopus 로고    scopus 로고
    • Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines
    • Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2015, 67, 431-438.
    • (2015) Int. J. Electr. Power Energy Syst. , vol.67 , pp. 431-438
    • Kaytez, F.1    Taplamacioglu, M.C.2    Cam, E.3    Hardalac, F.4
  • 30
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • Dong, B., Cao, C., Lee, S.E. Applying support vector machines to predict building energy consumption in tropical region. Energy Build. 2005, 37, 545-553.
    • (2005) Energy Build. , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 31
    • 84922715479 scopus 로고    scopus 로고
    • Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach
    • Jung, H.C., Kim, J.S., Heo, H. Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach. Energy Build. 2015, 90, 76-84.
    • (2015) Energy Build. , vol.90 , pp. 76-84
    • Jung, H.C.1    Kim, J.S.2    Heo, H.3
  • 32
    • 84928710711 scopus 로고    scopus 로고
    • Applications of fuzzy logic in renewable energy systems-A review
    • Suganthi, L., Iniyan, S., Samuel, A.A. Applications of fuzzy logic in renewable energy systems-A review. Renew. Sustain. Energy Rev. 2015, 48, 585-607.
    • (2015) Renew. Sustain. Energy Rev. , vol.48 , pp. 585-607
    • Suganthi, L.1    Iniyan, S.2    Samuel, A.A.3
  • 33
    • 84925438294 scopus 로고    scopus 로고
    • Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario
    • Ciabattoni, L., Grisostomi, M., Ippoliti, G., Longhi, S. Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario. Energy 2014, 74, 359-367.
    • (2014) Energy , vol.74 , pp. 359-367
    • Ciabattoni, L.1    Grisostomi, M.2    Ippoliti, G.3    Longhi, S.4
  • 34
    • 77956169754 scopus 로고    scopus 로고
    • Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system
    • Li, K., Su, H. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system. Energy Build. 2010, 42, 2070-2076.
    • (2010) Energy Build. , vol.42 , pp. 2070-2076
    • Li, K.1    Su, H.2
  • 35
    • 84901684155 scopus 로고    scopus 로고
    • Forecasting the annual electricity consumption of Turkey using an optimized grey model
    • Hamzacebi, C., Es, H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 2014, 70, 165-171.
    • (2014) Energy , vol.70 , pp. 165-171
    • Hamzacebi, C.1    Es, H.A.2
  • 36
    • 80054755388 scopus 로고    scopus 로고
    • Forecasting energy consumption using a grey model improved by incorporating genetic programming
    • Lee, Y.-S., Tong, L.-I. Forecasting energy consumption using a grey model improved by incorporating genetic programming. Energy Convers. Manag. 2011, 52, 147-152.
    • (2011) Energy Convers. Manag. , vol.52 , pp. 147-152
    • Lee, Y.-S.1    Tong, L.-I.2
  • 37
    • 79953741212 scopus 로고    scopus 로고
    • A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory
    • Guo, J.J.;Wu, J.Y.;Wang, R.Z. A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory. Energy Build. 2011, 43, 1273-1279.
    • (2011) Energy Build. , vol.43 , pp. 1273-1279
    • Guo, J.J.1    Wu, J.Y.2    Wang, R.Z.3
  • 41
    • 10844266054 scopus 로고    scopus 로고
    • Energetic analysis of a passive solar design, incorporated in a courtyard after refurbishment, using an innovative cover component based in a sawtooth roof concept
    • Heras, M.R., Jimenez, M.J., San Isidro, M.J., Zarzalejo, L.F., Perez, M. Energetic analysis of a passive solar design, incorporated in a courtyard after refurbishment, using an innovative cover component based in a sawtooth roof concept. Sol. Energy 2005, 78, 85-96.
    • (2005) Sol. Energy , vol.78 , pp. 85-96
    • Heras, M.R.1    Jimenez, M.J.2    San Isidro, M.J.3    Zarzalejo, L.F.4    Perez, M.5
  • 42
    • 80054726917 scopus 로고    scopus 로고
    • Evolutionary multiobjective neural network models identification: Evolving task-optimised models
    • Ferreira, P.M., Ruano, A.E. Evolutionary multiobjective neural network models identification: Evolving task-optimised models. New Adv. Intell. Signal Process. 2011, 372, 21-53.
    • (2011) New Adv. Intell. Signal Process. , vol.372 , pp. 21-53
    • Ferreira, P.M.1    Ruano, A.E.2
  • 43
    • 79955716384 scopus 로고    scopus 로고
    • An overview of nonlinear identification and control with neural networks
    • Ruano, A.E., Ed., Institution of Electrical Engineers: London, UK
    • Ruano, A.E., Ferreira, P.M., Fonseca, C.M. An overview of nonlinear identification and control with neural networks. In Intelligent Control Systems Using Computational Intelligence Techniques, Ruano, A.E., Ed., Institution of Electrical Engineers: London, UK, 2005, pp. 37-87.
    • (2005) Intelligent Control Systems Using Computational Intelligence Techniques , pp. 37-87
    • Ruano, A.E.1    Ferreira, P.M.2    Fonseca, C.M.3
  • 44
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431-441.
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 45
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 46
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser, A.M., Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134-1140. [PubMed]
    • (1986) Phys. Rev. A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 47
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel, M.B., Brown, R., Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403-3411. [PubMed]
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 49
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • Zitzler, E., Deb, K., Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolut. Comput. 2000, 8, 173-195. [PubMed]
    • (2000) Evolut. Comput. , vol.8 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 50
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • Fonseca, C.M., Fleming, P.J. An overview of evolutionary algorithms in multiobjective optimization. Evolut. Comput. 1995, 3, 1-16.
    • (1995) Evolut. Comput. , vol.3 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 51
    • 0031701082 scopus 로고    scopus 로고
    • Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation
    • Fonseca, C.M., Fleming, P.J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1998, 28, 26-37.
    • (1998) IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. , vol.28 , pp. 26-37
    • Fonseca, C.M.1    Fleming, P.J.2
  • 53
    • 0036138323 scopus 로고    scopus 로고
    • Neural network models in greenhouse air temperature prediction
    • Ferreira, P.M., Faria, E.A., Ruano, A.E. Neural network models in greenhouse air temperature prediction. Neurocomputing 2002, 43, 51-75.
    • (2002) Neurocomputing , vol.43 , pp. 51-75
    • Ferreira, P.M.1    Faria, E.A.2    Ruano, A.E.3
  • 56
    • 84992504864 scopus 로고    scopus 로고
    • A randomized approximation convex hull algorithm for high dimensions
    • Ruano, A., Khosravani, H.R., Ferreira, P.M. A randomized approximation convex hull algorithm for high dimensions. IFAC PapersOnLine 2015, 48, 123-128.
    • (2015) IFAC PapersOnLine , vol.48 , pp. 123-128
    • Ruano, A.1    Khosravani, H.R.2    Ferreira, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.