메뉴 건너뛰기




Volumn 177, Issue , 2016, Pages 751-770

Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns

Author keywords

Building energy management; Energy consumption; Machine learning; Metaheuristic optimization; Pattern prediction; Smart grid data; Time series technique

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIG DATA; BUILDINGS; ELECTRIC POWER TRANSMISSION NETWORKS; ENERGY CONSERVATION; ENERGY EFFICIENCY; ENERGY UTILIZATION; FORECASTING; LEARNING SYSTEMS; OPTIMIZATION; TIME SERIES;

EID: 84973111565     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2016.05.074     Document Type: Article
Times cited : (127)

References (70)
  • 1
    • 79955518907 scopus 로고    scopus 로고
    • Low carbon electricity development in China - an IRSP perspective based on super smart grid
    • Yuan J., Hu Z. Low carbon electricity development in China - an IRSP perspective based on super smart grid. Renew Sustain Energy Rev 2011, 15:2707-2713.
    • (2011) Renew Sustain Energy Rev , vol.15 , pp. 2707-2713
    • Yuan, J.1    Hu, Z.2
  • 3
    • 84940614995 scopus 로고    scopus 로고
    • Prediction of the Italian electricity price for smart grid applications
    • Crisostomi E., Gallicchio C., Micheli A., Raugi M., Tucci M. Prediction of the Italian electricity price for smart grid applications. Neurocomputing 2015, 170:286-295.
    • (2015) Neurocomputing , vol.170 , pp. 286-295
    • Crisostomi, E.1    Gallicchio, C.2    Micheli, A.3    Raugi, M.4    Tucci, M.5
  • 5
    • 84947983625 scopus 로고    scopus 로고
    • A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads
    • Soares J., Fotouhi Ghazvini M.A., Vale Z., de Moura Oliveira P.B. A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads. Appl Energy 2016, 162:1074-1088.
    • (2016) Appl Energy , vol.162 , pp. 1074-1088
    • Soares, J.1    Fotouhi Ghazvini, M.A.2    Vale, Z.3    de Moura Oliveira, P.B.4
  • 6
    • 84928942949 scopus 로고    scopus 로고
    • Smart grid projects in Europe: current status, maturity and future scenarios
    • Colak I., Fulli G., Sagiroglu S., Yesilbudak M., Covrig C.-F. Smart grid projects in Europe: current status, maturity and future scenarios. Appl Energy 2015, 152:58-70.
    • (2015) Appl Energy , vol.152 , pp. 58-70
    • Colak, I.1    Fulli, G.2    Sagiroglu, S.3    Yesilbudak, M.4    Covrig, C.-F.5
  • 8
    • 84960807952 scopus 로고    scopus 로고
    • The role of smart grids in the building sector
    • Kolokotsa D. The role of smart grids in the building sector. Energy Build 2016, 116:703-708.
    • (2016) Energy Build , vol.116 , pp. 703-708
    • Kolokotsa, D.1
  • 9
    • 84925275632 scopus 로고    scopus 로고
    • Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications
    • Cui B., Gao D-c, Wang S., Xue X. Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications. Appl Energy 2015, 147:523-535.
    • (2015) Appl Energy , vol.147 , pp. 523-535
    • Cui, B.1    Gao, D.-C.2    Wang, S.3    Xue, X.4
  • 10
    • 84890815228 scopus 로고    scopus 로고
    • An interactive building power demand management strategy for facilitating smart grid optimization
    • Xue X., Wang S., Sun Y., Xiao F. An interactive building power demand management strategy for facilitating smart grid optimization. Appl Energy 2014, 116:297-310.
    • (2014) Appl Energy , vol.116 , pp. 297-310
    • Xue, X.1    Wang, S.2    Sun, Y.3    Xiao, F.4
  • 12
    • 84929324258 scopus 로고    scopus 로고
    • Development forecast and technology roadmap analysis of renewable energy in buildings in China
    • Zhang W., Liu S., Li N., Xie H., Li X. Development forecast and technology roadmap analysis of renewable energy in buildings in China. Renew Sustain Energy Rev 2015, 49:395-402.
    • (2015) Renew Sustain Energy Rev , vol.49 , pp. 395-402
    • Zhang, W.1    Liu, S.2    Li, N.3    Xie, H.4    Li, X.5
  • 13
    • 84942257658 scopus 로고    scopus 로고
    • Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data
    • Hsu D. Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data. Appl Energy 2015, 160:153-163.
    • (2015) Appl Energy , vol.160 , pp. 153-163
    • Hsu, D.1
  • 14
    • 84925541167 scopus 로고    scopus 로고
    • Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach
    • Lü X., Lu T., Kibert C.J., Viljanen M. Modeling and forecasting energy consumption for heterogeneous buildings using a physical-statistical approach. Appl Energy 2015, 144:261-275.
    • (2015) Appl Energy , vol.144 , pp. 261-275
    • Lü, X.1    Lu, T.2    Kibert, C.J.3    Viljanen, M.4
  • 15
    • 84925855723 scopus 로고    scopus 로고
    • Regression analysis for prediction of residential energy consumption
    • Fumo N., Rafe Biswas M.A. Regression analysis for prediction of residential energy consumption. Renew Sustain Energy Rev 2015, 47:332-343.
    • (2015) Renew Sustain Energy Rev , vol.47 , pp. 332-343
    • Fumo, N.1    Rafe Biswas, M.A.2
  • 16
    • 60249090242 scopus 로고    scopus 로고
    • Prediction of building energy consumption by using artificial neural networks
    • Ekici B.B., Aksoy U.T. Prediction of building energy consumption by using artificial neural networks. Adv Eng Softw 2009, 40:356-362.
    • (2009) Adv Eng Softw , vol.40 , pp. 356-362
    • Ekici, B.B.1    Aksoy, U.T.2
  • 17
    • 84872411330 scopus 로고    scopus 로고
    • Neural network-based forecasting of energy consumption due to electric lighting in office buildings
    • D'Andrea E., Lazzerini B., del Rosario S.L. Neural network-based forecasting of energy consumption due to electric lighting in office buildings. Sustain Internet ICT Sustain 2012, 10:1-5.
    • (2012) Sustain Internet ICT Sustain , vol.10 , pp. 1-5
    • D'Andrea, E.1    Lazzerini, B.2    del Rosario, S.L.3
  • 18
    • 64849083683 scopus 로고    scopus 로고
    • Applying support vector machine to predict hourly cooling load in the building
    • Li Q., Meng Q., Cai J., Yoshino H., Mochida A. Applying support vector machine to predict hourly cooling load in the building. Appl Energy 2009, 86:2249-2256.
    • (2009) Appl Energy , vol.86 , pp. 2249-2256
    • Li, Q.1    Meng, Q.2    Cai, J.3    Yoshino, H.4    Mochida, A.5
  • 21
    • 79953741212 scopus 로고    scopus 로고
    • A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory
    • Guo J.J., Wu J.Y., Wang R.Z. A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory. Energy Build 2011, 43:1273-1279.
    • (2011) Energy Build , vol.43 , pp. 1273-1279
    • Guo, J.J.1    Wu, J.Y.2    Wang, R.Z.3
  • 22
    • 84901684155 scopus 로고    scopus 로고
    • Forecasting the annual electricity consumption of Turkey using an optimized grey model
    • Hamzacebi C., Es H.A. Forecasting the annual electricity consumption of Turkey using an optimized grey model. Energy 2014, 70:165-171.
    • (2014) Energy , vol.70 , pp. 165-171
    • Hamzacebi, C.1    Es, H.A.2
  • 24
    • 77955173218 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
    • Tan Z., Zhang J., Wang J., Xu J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. Appl Energy 2010, 87:3606-3610.
    • (2010) Appl Energy , vol.87 , pp. 3606-3610
    • Tan, Z.1    Zhang, J.2    Wang, J.3    Xu, J.4
  • 26
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • Khashei M., Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl Soft Comput 2011, 11:2664-2675.
    • (2011) Appl Soft Comput , vol.11 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 27
    • 84865024300 scopus 로고    scopus 로고
    • Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
    • Wang Y., Wang J., Zhao G., Dong Y. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Policy 2012, 48:284-294.
    • (2012) Energy Policy , vol.48 , pp. 284-294
    • Wang, Y.1    Wang, J.2    Zhao, G.3    Dong, Y.4
  • 28
    • 79956144727 scopus 로고    scopus 로고
    • Support vector regression based shear strength modelling of deep beams
    • Pal M., Deswal S. Support vector regression based shear strength modelling of deep beams. Comput Struct 2011, 89:1430-1439.
    • (2011) Comput Struct , vol.89 , pp. 1430-1439
    • Pal, M.1    Deswal, S.2
  • 29
    • 84859209620 scopus 로고    scopus 로고
    • Prediction of the mechanical behavior of the Oporto granite using Data Mining techniques
    • Martins F.F., Begonha A., Amália Sequeira Braga M. Prediction of the mechanical behavior of the Oporto granite using Data Mining techniques. Expert Syst Appl 2012, 39:8778-8783.
    • (2012) Expert Syst Appl , vol.39 , pp. 8778-8783
    • Martins, F.F.1    Begonha, A.2    Amália Sequeira Braga, M.3
  • 31
    • 84875690842 scopus 로고    scopus 로고
    • State of the art in building modelling and energy performances prediction: a review
    • Foucquier A., Robert S., Suard F., Stéphan L., Jay A. State of the art in building modelling and energy performances prediction: a review. Renew Sustain Energy Rev 2013, 23:272-288.
    • (2013) Renew Sustain Energy Rev , vol.23 , pp. 272-288
    • Foucquier, A.1    Robert, S.2    Suard, F.3    Stéphan, L.4    Jay, A.5
  • 32
    • 84890278566 scopus 로고    scopus 로고
    • A review on the basics of building energy estimation
    • Fumo N. A review on the basics of building energy estimation. Renew Sustain Energy Rev 2014, 31:53-60.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 53-60
    • Fumo, N.1
  • 33
    • 84942304105 scopus 로고    scopus 로고
    • Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis
    • Li K., Hu C., Liu G., Xue W. Building's electricity consumption prediction using optimized artificial neural networks and principal component analysis. Energy Build 2015, 108:106-113.
    • (2015) Energy Build , vol.108 , pp. 106-113
    • Li, K.1    Hu, C.2    Liu, G.3    Xue, W.4
  • 34
    • 84905395972 scopus 로고    scopus 로고
    • A prediction model based on neural networks for the energy consumption of a bioclimatic building
    • Mena R., Rodríguez F., Castilla M., Arahal M.R. A prediction model based on neural networks for the energy consumption of a bioclimatic building. Energy Build 2014, 82:142-155.
    • (2014) Energy Build , vol.82 , pp. 142-155
    • Mena, R.1    Rodríguez, F.2    Castilla, M.3    Arahal, M.R.4
  • 35
    • 84947969489 scopus 로고    scopus 로고
    • Modeling temporal variations in global residential energy consumption and pollutant emissions
    • Chen H., Huang Y., Shen H., Chen Y., Ru M., Chen Y., et al. Modeling temporal variations in global residential energy consumption and pollutant emissions. Appl Energy 2015, 10.1016/j.apenergy.2015.10.185.
    • (2015) Appl Energy
    • Chen, H.1    Huang, Y.2    Shen, H.3    Chen, Y.4    Ru, M.5    Chen, Y.6
  • 36
    • 84899701114 scopus 로고    scopus 로고
    • Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
    • Fan C., Xiao F., Wang S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl Energy 2014, 127:1-10.
    • (2014) Appl Energy , vol.127 , pp. 1-10
    • Fan, C.1    Xiao, F.2    Wang, S.3
  • 37
    • 84860223914 scopus 로고    scopus 로고
    • A review on the prediction of building energy consumption
    • Zhao H.-X., Magoulès F. A review on the prediction of building energy consumption. Renew Sustain Energy Rev 2012, 16:3586-3592.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3586-3592
    • Zhao, H.-X.1    Magoulès, F.2
  • 38
    • 84943265845 scopus 로고    scopus 로고
    • Day-ahead predictions of electricity consumption in a Swedish office building from weather, occupancy, and temporal data
    • Sandels C., Widén J., Nordström L., Andersson E. Day-ahead predictions of electricity consumption in a Swedish office building from weather, occupancy, and temporal data. Energy Build 2015, 108:279-290.
    • (2015) Energy Build , vol.108 , pp. 279-290
    • Sandels, C.1    Widén, J.2    Nordström, L.3    Andersson, E.4
  • 39
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang P.G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, P.G.1
  • 40
    • 84975725286 scopus 로고    scopus 로고
    • Forecasting: principles and practice
    • Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice; 2013. https://www.otexts.org/fpp:Otexts.
    • (2013)
    • Hyndman, R.J.1    Athanasopoulos, G.2
  • 41
    • 33748133361 scopus 로고    scopus 로고
    • A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan
    • Chen K.-Y., Wang C.-H. A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan. Expert Syst Appl 2007, 32:254-264.
    • (2007) Expert Syst Appl , vol.32 , pp. 254-264
    • Chen, K.-Y.1    Wang, C.-H.2
  • 42
    • 79951508907 scopus 로고    scopus 로고
    • A hybrid SARIMA wavelet transform method for sales forecasting
    • Choi T.-M., Yu Y., Au K.-F. A hybrid SARIMA wavelet transform method for sales forecasting. Decis Support Syst 2011, 51:130-140.
    • (2011) Decis Support Syst , vol.51 , pp. 130-140
    • Choi, T.-M.1    Yu, Y.2    Au, K.-F.3
  • 43
    • 84922715479 scopus 로고    scopus 로고
    • Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach
    • Jung H.C., Kim J.S., Heo H. Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach. Energy Build 2015, 90:76-84.
    • (2015) Energy Build , vol.90 , pp. 76-84
    • Jung, H.C.1    Kim, J.S.2    Heo, H.3
  • 44
    • 84862821419 scopus 로고    scopus 로고
    • Forecasting nonlinear time series of energy consumption using a hybrid dynamic model
    • Lee Y.-S., Tong L.-I. Forecasting nonlinear time series of energy consumption using a hybrid dynamic model. Appl Energy 2012, 94:251-256.
    • (2012) Appl Energy , vol.94 , pp. 251-256
    • Lee, Y.-S.1    Tong, L.-I.2
  • 46
    • 84938943386 scopus 로고    scopus 로고
    • Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition
    • Khandelwal I., Adhikari R., Verma G. Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Comput Sci 2015, 48:173-179.
    • (2015) Procedia Comput Sci , vol.48 , pp. 173-179
    • Khandelwal, I.1    Adhikari, R.2    Verma, G.3
  • 47
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 48
    • 0038383172 scopus 로고    scopus 로고
    • Time-series analysis with neural networks and ARIMA-neural network hybrids
    • Hansen J.V., Nelson R.D. Time-series analysis with neural networks and ARIMA-neural network hybrids. J Exp Theor Artif Intell 2003, 15:315-330.
    • (2003) J Exp Theor Artif Intell , vol.15 , pp. 315-330
    • Hansen, J.V.1    Nelson, R.D.2
  • 49
    • 67651208402 scopus 로고    scopus 로고
    • Hybrid grey relational artificial neural network and auto regressive integrated moving average model for forecasting time-series data
    • Sallehuddin R., Hj.Shamsuddin S.M. Hybrid grey relational artificial neural network and auto regressive integrated moving average model for forecasting time-series data. Appl Artif Intell 2009, 23:443-486.
    • (2009) Appl Artif Intell , vol.23 , pp. 443-486
    • Sallehuddin, R.1    Hj Shamsuddin, S.M.2
  • 50
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai P.-F., Lin C.-S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33:497-505.
    • (2005) Omega , vol.33 , pp. 497-505
    • Pai, P.-F.1    Lin, C.-S.2
  • 51
    • 57649227235 scopus 로고    scopus 로고
    • Stock market forecasting model based on a hybrid ARMA and support vector machines
    • international conference on management science and engineering
    • Da-yong Z, Hong-wei S, Pu C. Stock market forecasting model based on a hybrid ARMA and support vector machines. In: 15th Annual conference proceedings, international conference on management science and engineering, 2008. p. 1312-7.
    • (2008) 15th Annual conference proceedings , pp. 1312-1317
    • Da-yong, Z.1    Hong-wei, S.2    Pu, C.3
  • 52
    • 77955322938 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling
    • Che J., Wang J. Short-term electricity prices forecasting based on support vector regression and Auto-regressive integrated moving average modeling. Energy Convers Manage 2010, 51:1911-1917.
    • (2010) Energy Convers Manage , vol.51 , pp. 1911-1917
    • Che, J.1    Wang, J.2
  • 53
    • 84934991693 scopus 로고    scopus 로고
    • Fault prediction for nonlinear system using sliding ARMA combined with online LS-SVR
    • Su S., Zhang W., Zhao S. Fault prediction for nonlinear system using sliding ARMA combined with online LS-SVR. Math Probl Eng 2014, 2014:9.
    • (2014) Math Probl Eng , vol.2014 , pp. 9
    • Su, S.1    Zhang, W.2    Zhao, S.3
  • 56
    • 84952333479 scopus 로고    scopus 로고
    • Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression
    • Chou J.-S., Ngo N.-T., Pham A.-D. Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression. J Comput Civil Eng 2016, 30:04015002.
    • (2016) J Comput Civil Eng , vol.30
    • Chou, J.-S.1    Ngo, N.-T.2    Pham, A.-D.3
  • 58
    • 84940056670 scopus 로고    scopus 로고
    • Differential evolution for optimization of functionally graded beams
    • Roque C.M.C., Martins P.A.L.S. Differential evolution for optimization of functionally graded beams. Compos Struct 2015, 133:1191-1197.
    • (2015) Compos Struct , vol.133 , pp. 1191-1197
    • Roque, C.M.C.1    Martins, P.A.L.S.2
  • 61
    • 0037117197 scopus 로고    scopus 로고
    • A fuzzy seasonal ARIMA model for forecasting
    • Tseng F.-M., Tzeng G.-H. A fuzzy seasonal ARIMA model for forecasting. Fuzzy Sets Syst 2002, 126:367-376.
    • (2002) Fuzzy Sets Syst , vol.126 , pp. 367-376
    • Tseng, F.-M.1    Tzeng, G.-H.2
  • 62
    • 84973097670 scopus 로고    scopus 로고
    • Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators
    • Alwee R., Hj Shamsuddin S.M., Sallehuddin R. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators. Sci World J 2013, 2013:11.
    • (2013) Sci World J , vol.2013 , pp. 11
    • Alwee, R.1    Hj Shamsuddin, S.M.2    Sallehuddin, R.3
  • 63
    • 84939781965 scopus 로고    scopus 로고
    • A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation
    • Shamshirband S., Mohammadi K., Yee P.L., Petković D., Mostafaeipour A. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation. Renew Sustain Energy Rev 2015, 52:1031-1042.
    • (2015) Renew Sustain Energy Rev , vol.52 , pp. 1031-1042
    • Shamshirband, S.1    Mohammadi, K.2    Yee, P.L.3    Petković, D.4    Mostafaeipour, A.5
  • 64
    • 84935845022 scopus 로고    scopus 로고
    • A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
    • Raza M.Q., Khosravi A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew Sustain Energy Rev 2015, 50:1352-1372.
    • (2015) Renew Sustain Energy Rev , vol.50 , pp. 1352-1372
    • Raza, M.Q.1    Khosravi, A.2
  • 67
    • 84873688827 scopus 로고    scopus 로고
    • Improved firefly algorithm approach applied to chiller loading for energy conservation
    • Coelho L.D.S., Mariani V.C. Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy Build 2013, 59:273-278.
    • (2013) Energy Build , vol.59 , pp. 273-278
    • Coelho, L.D.S.1    Mariani, V.C.2
  • 69
    • 84957916796 scopus 로고    scopus 로고
    • Smart grid data analytics framework for increasing energy savings in residential buildings
    • Chou J.-S., Ngo N.-T. Smart grid data analytics framework for increasing energy savings in residential buildings. Autom Constr 2016, 10.1016/j.autcon.2016.01.002.
    • (2016) Autom Constr
    • Chou, J.-S.1    Ngo, N.-T.2
  • 70
    • 84897757292 scopus 로고    scopus 로고
    • Real-time detection of anomalous power consumption
    • Chou J.-S., Telaga A.S. Real-time detection of anomalous power consumption. Renew Sustain Energy Rev 2014, 33:400-411.
    • (2014) Renew Sustain Energy Rev , vol.33 , pp. 400-411
    • Chou, J.-S.1    Telaga, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.