메뉴 건너뛰기




Volumn , Issue , 2017, Pages 2703-2709

Latent smooth skeleton embedding

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; EIGENVALUES AND EIGENFUNCTIONS; MATRIX ALGEBRA;

EID: 85030481919     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (27)
  • 1
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Belkin, M., and Niyogi, P. 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, Volume 14, 585-591.
    • (2001) NIPS , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd, S.; Parikh, N. and Eric, C.; Peleato, B.; and Eckstein, J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. FTML 3(1):1-122.
    • (2011) FTML , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Eric, C.3    Peleato, B.4    Eckstein, J.5
  • 3
    • 77958497920 scopus 로고    scopus 로고
    • Dimension reduction: A guided tour
    • Burges, C. J. C. 2009. Dimension reduction: a guided tour. FTML 2(4):275-365.
    • (2009) FTML , vol.2 , Issue.4 , pp. 275-365
    • Burges, C.J.C.1
  • 4
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • Byrd, R. H.; Lu, P.; Nocedal, J.; and Zhu, C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5):1190-1208.
    • (1995) SIAM J. Sci. Comput , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 5
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
    • Curtis, C.; Shah, S. P.; Chin, S.; et al. 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346-352.
    • (2012) Nature , vol.486 , Issue.7403 , pp. 346-352
    • Curtis, C.1    Shah, S.P.2    Chin, S.3
  • 6
    • 34250663051 scopus 로고    scopus 로고
    • Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
    • Dudík, M.; Phillips, S. J.; and Schapire, R. E. 2007. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. JMLR 8(6).
    • (2007) JMLR , vol.8 , Issue.6
    • Dudík, M.1    Phillips, S.J.2    Schapire, R.E.3
  • 7
    • 85162319688 scopus 로고    scopus 로고
    • Sparse manifold clustering and embedding
    • Elhamifar, E., and Vidal, R. 2011. Sparse manifold clustering and embedding. In NIPS, 55-63.
    • (2011) NIPS , pp. 55-63
    • Elhamifar, E.1    Vidal, R.2
  • 8
    • 84856013431 scopus 로고    scopus 로고
    • Clonal evolution in cancer
    • Greaves, M., and Maley, C. C. 2012. Clonal evolution in cancer. Nature 481(7381):306-313.
    • (2012) Nature , vol.481 , Issue.7381 , pp. 306-313
    • Greaves, M.1    Maley, C.C.2
  • 11
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with Gaussian process latent variable models
    • Lawrence, N. D. 2005. Probabilistic non-linear principal component analysis with gaussian process latent variable models. JMLR 6:1783-1816.
    • (2005) JMLR , vol.6 , pp. 1783-1816
    • Lawrence, N.D.1
  • 12
    • 84862001101 scopus 로고    scopus 로고
    • A unifying probabilistic perspective for spectral dimensionality reduction: Insights and new models
    • Lawrence, N. D. 2012. A unifying probabilistic perspective for spectral dimensionality reduction: Insights and new models. JMLR 13(1):1609-1638.
    • (2012) JMLR , vol.13 , Issue.1 , pp. 1609-1638
    • Lawrence, N.D.1
  • 13
    • 84862288151 scopus 로고    scopus 로고
    • Learning scale free networks by reweighted l1 regularization
    • Liu, Q., and Ihler, A. T. 2011. Learning scale free networks by reweighted l1 regularization. In AISTATS, 40-48.
    • (2011) AISTATS , pp. 40-48
    • Liu, Q.1    Ihler, A.T.2
  • 14
    • 80053135735 scopus 로고    scopus 로고
    • Parameter-free spectral kernel learning
    • Mao, Q., and Tsang, I. W. 2010. Parameter-free spectral kernel learning. UAI.
    • (2010) UAI
    • Mao, Q.1    Tsang, I.W.2
  • 15
    • 84961922790 scopus 로고    scopus 로고
    • SimplePPT: A simple principal tree algorithm
    • Mao, Q.; Yang, L.; Wang, L.; Goodison, S.; and Sun, Y. 2015. SimplePPT: A simple principal tree algorithm. In SDM.
    • (2015) SDM
    • Mao, Q.1    Yang, L.2    Wang, L.3    Goodison, S.4    Sun, Y.5
  • 16
    • 85030460212 scopus 로고    scopus 로고
    • A unified probabilistic framework for robust manifold learning and embedding
    • Mao, Q.; Wang, L.; and Tsang, I. W. 2016. A unified probabilistic framework for robust manifold learning and embedding. Machine Learning.
    • (2016) Machine Learning
    • Mao, Q.1    Wang, L.2    Tsang, I.W.3
  • 17
    • 78049383727 scopus 로고    scopus 로고
    • Spectral embedded clustering
    • Nie, F.; Xu, D.; Tsang, I. W.; and Zhang, C. 2009. Spectral embedded clustering. In IJCAI, 1181-1186.
    • (2009) IJCAI , pp. 1181-1186
    • Nie, F.1    Xu, D.2    Tsang, I.W.3    Zhang, C.4
  • 18
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Saul, L. K., and Roweis, S. T. 2003. Think globally, fit locally: unsupervised learning of low dimensional manifolds. JMLR 4:119-155.
    • (2003) JMLR , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 22
    • 9444285502 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • Smola, A. J., and Kondor, R. 2003. Kernels and regularization on graphs. In COLT. 144-158.
    • (2003) COLT , pp. 144-158
    • Smola, A.J.1    Kondor, R.2
  • 24
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • Weinberger, K. Q., and Saul, L. K. 2006. Unsupervised learning of image manifolds by semidefinite programming. IJCV 70(1):77-90.
    • (2006) IJCV , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 25
    • 83855163194 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization
    • Weinberger, K.; Packer, B.; and Saul, L. 2005. Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. In AISTATS, 381-388.
    • (2005) AISTATS , pp. 381-388
    • Weinberger, K.1    Packer, B.2    Saul, L.3
  • 26
    • 14344251006 scopus 로고    scopus 로고
    • Learning a kernel matrix for nonlinear dimensionality reduction
    • Weinberger, K.; Sha, F.; and Saul, L. 2004. Learning a kernel matrix for nonlinear dimensionality reduction. In ICML, 106.
    • (2004) ICML , vol.106
    • Weinberger, K.1    Sha, F.2    Saul, L.3
  • 27
    • 34250785110 scopus 로고    scopus 로고
    • A duality view of spectral methods for dimensionality reduction
    • ACM
    • Xiao, L.; Sun, J.; and Boyd, S. 2006. A duality view of spectral methods for dimensionality reduction. In ICML, 1041-1048. ACM.
    • (2006) ICML , pp. 1041-1048
    • Xiao, L.1    Sun, J.2    Boyd, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.