메뉴 건너뛰기




Volumn , Issue , 2015, Pages 792-800

SimplePPT: A simple principal tree algorithm

Author keywords

Cancer progression path; Principal curve; Principal graph; Reversed graph embedding

Indexed keywords

DATA MINING; DISEASES; EMBEDDINGS; FORESTRY;

EID: 84961922790     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611974010.89     Document Type: Conference Paper
Times cited : (26)

References (27)
  • 1
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.
    • (2001) NIPS
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the generative topographic mapping. Neural Comput, 10(1):215-34, 1998.
    • (1998) Neural Comput , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 6
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell, 17(8):790-9, 1995.
    • (1995) IEEE Trans Pattern Anal Mach Intell , vol.17 , Issue.8 , pp. 790-799
    • Cheng, Y.1
  • 8
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups
    • C. Curtis, S. P. Shah, S. Chin, and et al. The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups. Nature, 486(7403) :346-52, 2012.
    • (2012) Nature , vol.486 , Issue.7403 , pp. 346-352
    • Curtis, C.1    Shah, S.P.2    Chin, S.3
  • 9
    • 0026436795 scopus 로고
    • Self-organizing maps: Ordering, convergence properties and energy functions
    • E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, convergence properties and energy functions. Biol Cybern, 67:47-55, 1992.
    • (1992) Biol Cybern , vol.67 , pp. 47-55
    • Erwin, E.1    Obermayer, K.2    Schulten, K.3
  • 10
  • 13
    • 36348960733 scopus 로고    scopus 로고
    • Biconvex sets and optimization with biconvex functions - A survey and extensions
    • J. Gorski, F. Pfeuffer, and K. Klamroth. Biconvex sets and optimization with biconvex functions - a survey and extensions. Math Method Oper Res, 66:373-407, 2007.
    • (2007) Math Method Oper Res , vol.66 , pp. 373-407
    • Gorski, J.1    Pfeuffer, F.2    Klamroth, K.3
  • 14
    • 84950453673 scopus 로고
    • Principal curves
    • T. Hastie and W. Stuetzle. Principal curves. JASA, 84:502-16, 1989.
    • (1989) JASA , vol.84 , pp. 502-516
    • Hastie, T.1    Stuetzle, W.2
  • 16
    • 0036223199 scopus 로고    scopus 로고
    • Piecewise linear skeletonization using principal curves
    • B. Kégl and A. Kryzak. Piecewise linear skeletonization using principal curves. IEEE Trans Pattern Anal Mach Intell, 24(1):59-74, 2002.
    • (2002) IEEE Trans Pattern Anal Mach Intell , vol.24 , Issue.1 , pp. 59-74
    • Kégl, B.1    Kryzak, A.2
  • 19
    • 79955813270 scopus 로고    scopus 로고
    • Locally defined principal curves and surfaces
    • U. Ozertem and D. Erdogmus. Locally defined principal curves and surfaces. JMLR, 12:1249-86, 2011.
    • (2011) JMLR , vol.12 , pp. 1249-1286
    • Ozertem, U.1    Erdogmus, D.2
  • 20
    • 62449131093 scopus 로고    scopus 로고
    • Supervised risk predictor of breast cancer based on intrinsic subtypes
    • J.S. Parker, M. Mullins, M.C. Cheang, and et. al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol, 27(8): 1160-7, 2009.
    • (2009) J Clin Oncol , vol.27 , Issue.8 , pp. 1160-1167
    • Parker, J.S.1    Mullins, M.2    Cheang, M.C.3
  • 21
    • 0036794475 scopus 로고    scopus 로고
    • Principal curves with bounded turn
    • S. Sandilya and S. R. Kulkami. Principal curves with bounded turn. IEEE Trans Inf Theory, 48(10):2789-93, 2002.
    • (2002) IEEE Trans Inf Theory , vol.48 , Issue.10 , pp. 2789-2793
    • Sandilya, S.1    Kulkami, S.R.2
  • 22
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional mainfolds
    • L. Saul and S. Roweis. Think globally, fit locally: unsupervised learning of low dimensional mainfolds. JMLR, 4:119-55, 2003.
    • (2003) JMLR , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 25
    • 84964315153 scopus 로고    scopus 로고
    • Cancer progression modeling using static sample data
    • Y. Sun, J. Yao, N. Nowak, and S. Goodison. Cancer progression modeling using static sample data. Genome Biol, 15(8):440, 2014.
    • (2014) Genome Biol , vol.15 , Issue.8 , pp. 440
    • Sun, Y.1    Yao, J.2    Nowak, N.3    Goodison, S.4
  • 27
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc, 63(2):411-23, 2001.
    • (2001) J R Stat Soc , vol.63 , Issue.2 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.