메뉴 건너뛰기




Volumn 152, Issue , 2017, Pages 23-34

Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm

Author keywords

Diabetes; GPC; LDA; Machine learning; NB; QDA

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA HANDLING; DISCRIMINANT ANALYSIS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); LEARNING ALGORITHMS; MEDICAL PROBLEMS; NIOBIUM;

EID: 85029347697     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2017.09.004     Document Type: Article
Times cited : (199)

References (41)
  • 1
    • 61349099439 scopus 로고    scopus 로고
    • Diagnosis and classification of diabetes mellitus
    • Association, AmericanDiabetes, Diagnosis and classification of diabetes mellitus. Diabetes Care 32:Supplement 1 (2009), S62–S67.
    • (2009) Diabetes Care , vol.32 , pp. S62-S67
    • Association, A.1
  • 2
    • 0038829930 scopus 로고    scopus 로고
    • A Core Curriculum for Diabetes Education: Diabetes Management Therapies
    • American Association of Diabetes Educator
    • Franz, M.J., A Core Curriculum for Diabetes Education: Diabetes Management Therapies. Vol. 2, 2003, American Association of Diabetes Educator.
    • (2003) , vol.2
    • Franz, M.J.1
  • 3
    • 84939255085 scopus 로고    scopus 로고
    • Epidemiological perspectives of diabetes
    • Tao, Z., Shi, A., Zhao, J., Epidemiological perspectives of diabetes. Cell Biochem. Biophys. 73:1 (2015), 181–185.
    • (2015) Cell Biochem. Biophys. , vol.73 , Issue.1 , pp. 181-185
    • Tao, Z.1    Shi, A.2    Zhao, J.3
  • 4
    • 84903552407 scopus 로고    scopus 로고
    • Type 1 diabetes through the life span: a position statement of the american diabetes association
    • Chiang, J.L., Kirkman, M.S., Laffel, L.M.B., Peters, A.L., Type 1 diabetes through the life span: a position statement of the american diabetes association. Diabetes Care 37:7 (2014), 2034–2054.
    • (2014) Diabetes Care , vol.37 , Issue.7 , pp. 2034-2054
    • Chiang, J.L.1    Kirkman, M.S.2    Laffel, L.M.B.3    Peters, A.L.4
  • 6
    • 84881260585 scopus 로고    scopus 로고
    • Diabetes: Canada at the Tipping Point: Charting a New Path
    • Canadian Diabetes Association
    • Canadian Diabetes Association and Diabetes Qu´ebec, Diabetes: Canada at the Tipping Point: Charting a New Path. 2011, Canadian Diabetes Association.
    • (2011)
    • Canadian Diabetes Association and Diabetes Qu´ebec1
  • 7
    • 85029385808 scopus 로고    scopus 로고
    • Centers Disease Control, Prevention (CDC), Centers for Disease Control, and Prevention (CDC). National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the united states, 2011. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 201
    • Centers Disease Control, Prevention (CDC), Centers for Disease Control, and Prevention (CDC). National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the united states, 2011. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 201, 2011.
    • (2011)
  • 8
    • 77954597013 scopus 로고    scopus 로고
    • Intelligible support vector machines for diagnosis of diabetes mellitus
    • Barakat, M.N.H., Bradley, A.P., Intelligible support vector machines for diagnosis of diabetes mellitus. Inf. Technol. Biomed. IEEE Trans. 14:4 (2010), 1114–1120.
    • (2010) Inf. Technol. Biomed. IEEE Trans. , vol.14 , Issue.4 , pp. 1114-1120
    • Barakat, M.N.H.1    Bradley, A.P.2
  • 9
    • 85029348425 scopus 로고    scopus 로고
    • Classification of diabetes mellitus using machine learning techniques
    • kumar Dewangan, A., Agrawal, P., Classification of diabetes mellitus using machine learning techniques. Int. J. Eng. Appl. Sci. 2:5 (2015), 145–148.
    • (2015) Int. J. Eng. Appl. Sci. , vol.2 , Issue.5 , pp. 145-148
    • kumar Dewangan, A.1    Agrawal, P.2
  • 11
    • 84882932054 scopus 로고    scopus 로고
    • Automated identification of normal and diabetes heart rate signals using nonlinear measures
    • Acharya, U.R., Faust, O., Kadri, N.A., Suri, J.S., Yu, W., Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput. Biol. Med. 43:10 (2013), 1523–1529.
    • (2013) Comput. Biol. Med. , vol.43 , Issue.10 , pp. 1523-1529
    • Acharya, U.R.1    Faust, O.2    Kadri, N.A.3    Suri, J.S.4    Yu, W.5
  • 13
    • 84873022367 scopus 로고    scopus 로고
    • Computer-based identification of type 2 diabetic subjects with and without neuropathy using dynamic planter pressure and principal component analysis
    • Acharya, U.R., Tong, J., Subbhuraam, V.S., Chua, C.K., Ha, T.P., Ghista, D.N., Chattopadhyay, S., Ng, K.-H., Suri, J.S., Computer-based identification of type 2 diabetic subjects with and without neuropathy using dynamic planter pressure and principal component analysis. J. Med. Syst. 36:4 (2012), 2483–2491.
    • (2012) J. Med. Syst. , vol.36 , Issue.4 , pp. 2483-2491
    • Acharya, U.R.1    Tong, J.2    Subbhuraam, V.S.3    Chua, C.K.4    Ha, T.P.5    Ghista, D.N.6    Chattopadhyay, S.7    Ng, K.-H.8    Suri, J.S.9
  • 14
    • 84860253391 scopus 로고    scopus 로고
    • Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review
    • Faust, O., Acharya, R., Ng, E.Y.K., Ng, K.-H., Suri, J.S., Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 36:1 (2012), 145–157.
    • (2012) J. Med. Syst. , vol.36 , Issue.1 , pp. 145-157
    • Faust, O.1    Acharya, R.2    Ng, E.Y.K.3    Ng, K.-H.4    Suri, J.S.5
  • 15
    • 84896363417 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning
    • Williams, C.K.I., Rasmussen, C.E., Gaussian Processes for Machine Learning. the MIT Press, 2(3), 2006, 4.
    • (2006) the MIT Press , vol.2 , Issue.3 , pp. 4
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 16
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: mean-field algorithms
    • Opper, M., Winther, O., Gaussian processes for classification: mean-field algorithms. Neural Comput. 12:11 (2000), 2655–2684.
    • (2000) Neural Comput. , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 18
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R.A., The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7:2 (1936), 179–188.
    • (1936) Ann. Hum. Genet. , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 19
    • 0001352933 scopus 로고
    • Some examples of discrimination
    • Smith, C.A., Some examples of discrimination. Ann. Hum. Genet. 13:1 (1946), 272–282.
    • (1946) Ann. Hum. Genet. , vol.13 , Issue.1 , pp. 272-282
    • Smith, C.A.1
  • 20
    • 17444422535 scopus 로고    scopus 로고
    • Kernel density classification and boosting: an l 2 analysis
    • Marzio, M.D., Taylor, C.C., Kernel density classification and boosting: an l 2 analysis. Stat. Comput. 15:2 (2005), 113–123.
    • (2005) Stat. Comput. , vol.15 , Issue.2 , pp. 113-123
    • Marzio, M.D.1    Taylor, C.C.2
  • 21
    • 85029392683 scopus 로고    scopus 로고
    • UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), See
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), See: http://www.ics.uci.edu/mlearn/MLRepository.html (2003).
    • (2003)
    • Blake, C.L.1    Merz, C.J.2
  • 23
    • 79953241976 scopus 로고    scopus 로고
    • The effects of methods of imputation for missing values on the validity and reliability of scales
    • Cokluk, O., Kayri, M., The effects of methods of imputation for missing values on the validity and reliability of scales. Edu. Sci.: Theor. Pract. 11:1 (2011), 303–309.
    • (2011) Edu. Sci.: Theor. Pract. , vol.11 , Issue.1 , pp. 303-309
    • Cokluk, O.1    Kayri, M.2
  • 24
    • 84855280771 scopus 로고    scopus 로고
    • Does the missing data imputation method affect the composition and performance of prognostic models?
    • Baneshi, M.R., Talei, A.R., Does the missing data imputation method affect the composition and performance of prognostic models?. Iran. Red. Crescent Med. J., 14(1), 2012, 31.
    • (2012) Iran. Red. Crescent Med. J. , vol.14 , Issue.1 , pp. 31
    • Baneshi, M.R.1    Talei, A.R.2
  • 25
    • 84926065435 scopus 로고    scopus 로고
    • Dealing with missing values in data
    • Kaiser, J., Dealing with missing values in data. J. Syst. Integration, 5(1), 2014, 42.
    • (2014) J. Syst. Integration , vol.5 , Issue.1 , pp. 42
    • Kaiser, J.1
  • 26
    • 84942327539 scopus 로고    scopus 로고
    • A comparison of various imputation methods for missing values in air quality data
    • Zainuri, N.A., Jemain, A.A., Muda, N., A comparison of various imputation methods for missing values in air quality data. Sains Malays. 44:3 (2015), 449–456.
    • (2015) Sains Malays. , vol.44 , Issue.3 , pp. 449-456
    • Zainuri, N.A.1    Jemain, A.A.2    Muda, N.3
  • 27
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • Polat, K., Güneş, S., An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digit Signal Process. 17:4 (2007), 702–710.
    • (2007) Digit Signal Process. , vol.17 , Issue.4 , pp. 702-710
    • Polat, K.1    Güneş, S.2
  • 28
    • 0037382210 scopus 로고    scopus 로고
    • On-line pattern analysis by evolving self-organizing maps
    • Deng, D., Kasabov, N., On-line pattern analysis by evolving self-organizing maps. Neurocomputing 51:2 (2003), 87–103.
    • (2003) Neurocomputing , vol.51 , Issue.2 , pp. 87-103
    • Deng, D.1    Kasabov, N.2
  • 30
    • 84961601704 scopus 로고    scopus 로고
    • C4. 5: Programs for Machine Learning
    • Elsevier
    • Quinlan, J.R., C4. 5: Programs for Machine Learning. 2014, Elsevier.
    • (2014)
    • Quinlan, J.R.1
  • 31
    • 26944458433 scopus 로고    scopus 로고
    • The medical applications of attribute weighted artificial immune system (AWAIS): diagnosis of heart and diabetes diseases
    • Sahan, S.S., Polat, K., Kodaz, H., Güneş, S., The medical applications of attribute weighted artificial immune system (AWAIS): diagnosis of heart and diabetes diseases. Artif. Immune Syst., 2005, 456–468.
    • (2005) Artif. Immune Syst. , pp. 456-468
    • Sahan, S.S.1    Polat, K.2    Kodaz, H.3    Güneş, S.4
  • 32
    • 85029379458 scopus 로고    scopus 로고
    • A new classwise k nearest neighbor (CKNN) method for the classification of diabetes dataset
    • Christobel, Y.A., Sivaprakasam, P., A new classwise k nearest neighbor (CKNN) method for the classification of diabetes dataset. Int. J. Eng. Adv. Technol. (IJEAT) 2:3 (2013), 396–400.
    • (2013) Int. J. Eng. Adv. Technol. (IJEAT) , vol.2 , Issue.3 , pp. 396-400
    • Christobel, Y.A.1    Sivaprakasam, P.2
  • 33
    • 84934901561 scopus 로고    scopus 로고
    • A comparative approach for pima indians diabetes diagnosis using LDA-support vector machine and feed forward neural network
    • Parashar, A., Burse, K., Rawat, K., A comparative approach for pima indians diabetes diagnosis using LDA-support vector machine and feed forward neural network. Int. J. Adv. Res. Comput. Sci. Software Eng. 4:11 (2014), 378–383.
    • (2014) Int. J. Adv. Res. Comput. Sci. Software Eng. , vol.4 , Issue.11 , pp. 378-383
    • Parashar, A.1    Burse, K.2    Rawat, K.3
  • 34
    • 84954445997 scopus 로고    scopus 로고
    • Data Mining Algorithms Application in Diabetes Diseases Diagnosis: A Case Study
    • MAGNT Research Report
    • Farahmandian, M., Lotfi, Y., Maleki, I., Data Mining Algorithms Application in Diabetes Diseases Diagnosis: A Case Study. Technical Report, 2015, MAGNT Research Report.
    • (2015) Technical Report
    • Farahmandian, M.1    Lotfi, Y.2    Maleki, I.3
  • 35
    • 84963591308 scopus 로고    scopus 로고
    • Diagnosing diabetes type ii using a soft intelligent binary classification model
    • Khashei, M., Eftekhari, S., Parvizian, J., Diagnosing diabetes type ii using a soft intelligent binary classification model. Rev. Bioinf. Biometrics 1:1 (2012), 9–23.
    • (2012) Rev. Bioinf. Biometrics , vol.1 , Issue.1 , pp. 9-23
    • Khashei, M.1    Eftekhari, S.2    Parvizian, J.3
  • 37
    • 84901199106 scopus 로고    scopus 로고
    • Classification of diabetes disease using support vector machine
    • Kumari, V.A., Chitra, R., Classification of diabetes disease using support vector machine. Int. J. Eng. Res. Appl. 3:2 (2013), 1797–1801.
    • (2013) Int. J. Eng. Res. Appl. , vol.3 , Issue.2 , pp. 1797-1801
    • Kumari, V.A.1    Chitra, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.