메뉴 건너뛰기




Volumn 22, Issue 4, 2014, Pages 1044-1055

Comparison of difierent methods for determining diabetes

Author keywords

Artificial immune system; Artificial neural networks; Classification; Decision tree; Diabetes diagnosis; Pima Indian

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DECISION TREES; IMMUNE SYSTEM; NEURAL NETWORKS; TIME DELAY; VECTOR QUANTIZATION;

EID: 84902131956     PISSN: 13000632     EISSN: 13036203     Source Type: Journal    
DOI: 10.3906/elk-1209-82     Document Type: Article
Times cited : (38)

References (32)
  • 2
    • 84902146454 scopus 로고    scopus 로고
    • Who Geneva, Switzerland, WHO, available at
    • WHO, World Diabetes Statistics, Geneva, Switzerland, WHO, available at http://www.who.int/diabetes/en/index.html@ 2014.
    • (2014) World Diabetes Statistics
  • 3
    • 35548975678 scopus 로고    scopus 로고
    • Feature selection and classification model construction on type 2 diabetic patients data
    • Y. Huang, P. McCullagh, N. Black, R. Harper, "Feature selection and classification model construction on type 2 diabetic patients data", Artificial Intelligence in Medicine, Vol. 41, pp. 251-262, 2007.
    • (2007) Artificial Intelligence in Medicine , vol.41 , pp. 251-262
    • Huang, Y.1    McCullagh, P.2    Black, N.3    Harper, R.4
  • 4
    • 77957103583 scopus 로고    scopus 로고
    • Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases
    • S. Lekkas, L. Mikhailov, "Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases", Artificial Intelligence in Medicine, Vol. 50, pp. 117-126, 2010.
    • (2010) Artificial Intelligence in Medicine , vol.50 , pp. 117-126
    • Lekkas, S.1    Mikhailov, L.2
  • 5
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • K. Polat, S. Güneş, "An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease", Digital Signal Processing, Vol. 17, pp. 702-710, 2007.
    • (2007) Digital Signal Processing , vol.17 , pp. 702-710
    • Polat, K.1    Güneş, S.2
  • 6
    • 60349107274 scopus 로고    scopus 로고
    • A comparative study on diabetes disease diagnosis using neural networks
    • H. Temurtas, N. Yumusak, F. Temurtas, "A comparative study on diabetes disease diagnosis using neural networks", Expert Systems with Applications, Vol. 36, pp. 8610-8615, 2009.
    • (2009) Expert Systems with Applications , vol.36 , pp. 8610-8615
    • Temurtas, H.1    Yumusak, N.2    Temurtas, F.3
  • 10
    • 84902161016 scopus 로고    scopus 로고
    • Irvine, CA, USA, University of California Irvine, available at
    • UCI Machine Learning, Pima Indians Diabetes Data Set, Irvine, CA, USA, University of California Irvine, available at http://archive.ics.uci.edu/ml/ machine-learning-databases/pima-indians-diabetes.
    • UCI Machine Learning, Pima Indians Diabetes Data Set
  • 11
    • 38049106073 scopus 로고    scopus 로고
    • Artificial immune systems and applications in industrial problems
    • O. Engin, A. Döyen, "Artificial immune systems and applications in industrial problems", Gazi University Journal of Science, Vol. 17, pp. 71-84, 2004.
    • (2004) Gazi University Journal of Science , vol.17 , pp. 71-84
    • Engin, O.1    Döyen, A.2
  • 13
    • 21244465997 scopus 로고    scopus 로고
    • How do we evaluate artificial immune systems
    • S.M. Garrett, "How do we evaluate artificial immune systems", Evolutionary Computation, Vol. 13, pp. 145-178, 2005.
    • (2005) Evolutionary Computation , vol.13 , pp. 145-178
    • Garrett, S.M.1
  • 14
    • 34248550560 scopus 로고    scopus 로고
    • Computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system classifier algorithm
    • K. Polat, S. Güneş, "Computer aided medical diagnosis system based on principal component analysis and artificial immune recognition system classifier algorithm", Expert System with Applications, Vol. 34, pp. 773-779, 2008.
    • (2008) Expert System with Applications , vol.34 , pp. 773-779
    • Polat, K.1    Güneş, S.2
  • 15
    • 79961194929 scopus 로고    scopus 로고
    • Istanbul, Turkey, Papatya Yayincilik, (in Turkish)
    • Y. Özkan, Veri Madenciliǧi Yöntemleri, Istanbul, Turkey, Papatya Yayincilik, 2008 (in Turkish).
    • (2008) Veri Madenciliǧi Yöntemleri
    • Özkan, Y.1
  • 18
    • 84873074250 scopus 로고    scopus 로고
    • available at
    • Probabilistic Neural Networks, available at http://herselfsai.com/2007/ 03/probabilistic-neural-networks.html.
    • Probabilistic Neural Networks
  • 30
    • 84902150606 scopus 로고    scopus 로고
    • available at (in Turkish)
    • Wikipedia, ROC, available at http://tr.wikipedia.org/wiki/ROC (in Turkish).
    • Wikipedia, ROC
  • 32
    • 19244367672 scopus 로고    scopus 로고
    • Mining classification rules by using genetic algorithms with non-random initial population and uniform operator
    • K.K. Gündoǧan, B. Alataş, A. Karç, "Mining classification rules by using genetic algorithms with non-random initial population and uniform operator", Turkish Journal of Electrical Engineering & Computer Science, Vol. 12, pp. 43-52, 2004.
    • (2004) Turkish Journal of Electrical Engineering & Computer Science , vol.12 , pp. 43-52
    • Gündoǧan, K.K.1    Alataş, B.2    Karç, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.