메뉴 건너뛰기




Volumn 51, Issue , 2003, Pages 87-103

On-line pattern analysis by evolving self-organizing maps

Author keywords

Classification; Clustering; On line learning; Self organizing

Indexed keywords

ALGORITHMS; DATA PROCESSING; LEARNING SYSTEMS; PATTERN MATCHING; VECTOR QUANTIZATION;

EID: 0037382210     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(02)00599-4     Document Type: Article
Times cited : (83)

References (27)
  • 1
    • 4243144723 scopus 로고
    • Approximating functions and predicting time-series with multi-sigmoidal basis functions
    • I. Aleksander, J. Taylor (Eds.) Elsevier, Amsterdam
    • M. Benaim, L. Tomasini, Approximating functions and predicting time-series with multi-sigmoidal basis functions, in: I. Aleksander, J. Taylor (Eds.), Artificial Neural Networks, Vol. 2, Elsevier, Amsterdam, 1992, pp. 407-411.
    • (1992) Artificial Neural Networks , vol.2 , pp. 407-411
    • Benaim, M.1    Tomasini, L.2
  • 2
    • 0001311791 scopus 로고
    • Dynamic cell structure learns perfectly topology preserving map
    • J. Bruske, G. Sommer, Dynamic cell structure learns perfectly topology preserving map, Neural Comput. 7 (1995) 845-865.
    • (1995) Neural Comput. , vol.7 , pp. 845-865
    • Bruske, J.1    Sommer, G.2
  • 4
    • 0033714963 scopus 로고    scopus 로고
    • ESOM: An algorithm to evolve self-organizing maps from on-line data streams
    • IEEE Press, New York
    • D. Deng, N. Kasabov, ESOM: an algorithm to evolve self-organizing maps from on-line data streams, Proceedings of IJCNN'2000, Vol. VI, IEEE Press, New York, 2000, pp. 3-8.
    • (2000) Proceedings of IJCNN'2000 , vol.6 , pp. 3-8
    • Deng, D.1    Kasabov, N.2
  • 6
    • 0002717824 scopus 로고    scopus 로고
    • Squared unit augmented, radially extended, multilayer perceptrons
    • G.B. Orr, K.-R. Muller (Eds.) Vol. 1524, Springer, Berlin
    • G.W. Flake, Squared unit augmented, radially extended, multilayer perceptrons, in: G.B. Orr, K.-R. Muller (Eds.), Neural Networks: Tricks and Trade, Lecture Notes in Computer Science, Vol. 1524, Springer, Berlin, 1998, pp. 145-163.
    • (1998) Neural Networks: Tricks and Trade, Lecture Notes in Computer Science , pp. 145-163
    • Flake, G.W.1
  • 7
    • 0028748949 scopus 로고
    • Growing cell structures - A self-organizing network for unsupervised and supervised learning
    • B. Fritzke, Growing cell structures - a self-organizing network for unsupervised and supervised learning, Neural Networks 7 (1994) 1441-1460.
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 8
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • D. Touretzky, T.K. Keen (Eds.) MIT Press, Cambridge, MA
    • B. Fritzke, A growing neural gas network learns topologies, in: D. Touretzky, T.K. Keen (Eds.), Advances in Neural Information Processing Systems, Vol. 7, MIT Press, Cambridge, MA, 1995, pp. 625-632.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 625-632
    • Fritzke, B.1
  • 9
    • 84944036900 scopus 로고
    • A simple method for color quantization: Octree quantization
    • A. Glassner (Ed.) Academic, New York
    • M. Gervautz, W. Purgathofer, A simple method for color quantization: octree quantization, in: A. Glassner (Ed.), Graphics Gems, Academic, New York, 1990, pp. 287-293.
    • (1990) Graphics Gems , pp. 287-293
    • Gervautz, M.1    Purgathofer, W.2
  • 10
    • 0020153694 scopus 로고
    • Color image quantization for frame buffer display
    • P. Heckbert, Color image quantization for frame buffer display, Comput. Graphics (SIGGRAPH) 16 (1982) 297-307.
    • (1982) Comput. Graphics (SIGGRAPH) , vol.16 , pp. 297-307
    • Heckbert, P.1
  • 11
    • 0032207166 scopus 로고    scopus 로고
    • Comparing neural networks: A benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP
    • D. Heinke, F.H. Hamker, Comparing neural networks: a benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP, IEEE Trans. Neural Networks 9 (1998) 1279-1291.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1279-1291
    • Heinke, D.1    Hamker, F.H.2
  • 12
    • 0000071615 scopus 로고
    • Learning processes in neural networks
    • T.M. Heskes, B. Kappen, Learning processes in neural networks, Phys. Rev. A 44 (1991) 2718-2726.
    • (1991) Phys. Rev. A , vol.44 , pp. 2718-2726
    • Heskes, T.M.1    Kappen, B.2
  • 14
    • 0002495649 scopus 로고    scopus 로고
    • Function approximation with neural networks and local methods: Bias, variance and smoothness
    • P. Barlett, et al., (Eds.), Proceedings of Australian Conference on Neural Networks, ANU Press, Canberra
    • S. Lawrence, A.C. Tsoi, A.D. Back, Function approximation with neural networks and local methods: bias, variance and smoothness, in: P. Barlett, et al., (Eds.), Proceedings of Australian Conference on Neural Networks, ANU Press, Canberra, 1996, pp. 16-21.
    • (1996) , pp. 16-21
    • Lawrence, S.1    Tsoi, A.C.2    Back, A.D.3
  • 15
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Proceedings of the Fifth Berkeley Symposium on Mathematics, UC Press, Berkeley
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematics, UC Press, Berkeley, 1967, pp. 281-297.
    • (1967) , pp. 281-297
    • MacQueen, J.1
  • 16
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • J. Mao, A.K. Jain, Artificial neural networks for feature extraction and multivariate data projection, IEEE Trans. Neural Networks 6 (1995) 296-317.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 17
    • 0003748753 scopus 로고
    • Some extension of the K-means algorithm for image segmentation and pattern classification
    • Technical Report 1390, Massachusetts Institute of Technology
    • J.L. Marroquin, F. Girosi, Some extension of the K-means algorithm for image segmentation and pattern classification, Technical Report 1390, Massachusetts Institute of Technology, 1993.
    • (1993)
    • Marroquin, J.L.1    Girosi, F.2
  • 18
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • T.M. Martinetz, S.G. Berkovich, K.J. Schulten, Neural-gas network for vector quantization and its application to time-series prediction, IEEE Trans. Neural Networks 4 (1993) 558-569.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 19
    • 0028204732 scopus 로고
    • Topology representing networks
    • T. Martinetz, K. Schulten, Topology representing networks, Neural Networks 7 (1994) 507-522.
    • (1994) Neural Networks , vol.7 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 20
    • 0000415231 scopus 로고
    • Maximum likelihood competitive learning
    • D. Touretzky (Ed.) Morgan Kauffman, New York
    • S.J. Nowlan, Maximum likelihood competitive learning, in: D. Touretzky (Ed.), Advances in Neural Information Processing Systems, Vol. 2, Morgan Kauffman, New York, 1990, pp. 574-582.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 574-582
    • Nowlan, S.J.1
  • 21
    • 0003838144 scopus 로고
    • Dynamic error propagation networks
    • Ph.D. Thesis, Cambridge University, Cambridge
    • A.J. Robinson, Dynamic error propagation networks, Ph.D. Thesis, Cambridge University, Cambridge, 1989.
    • (1989)
    • Robinson, A.J.1
  • 22
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • K. Rose, E. Gurewitz, G.C. Fox, Statistical mechanics and phase transitions in clustering, Phys. Rev. Lett. 65 (1990) 945-948.
    • (1990) Phys. Rev. Lett. , vol.65 , pp. 945-948
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 23
    • 84887006810 scopus 로고
    • A non-linear mapping for data structure analysis
    • J. Sammon Jr., A non-linear mapping for data structure analysis, IEEE Trans. Comput. 18 (1969) 401-409.
    • (1969) IEEE Trans. Comput. , vol.18 , pp. 401-409
    • Sammon J., Jr.1
  • 24
    • 0001454975 scopus 로고    scopus 로고
    • Distribution based trees are more accurate
    • Springer, Hong Kong
    • N. Shang, L. Breiman, Distribution based trees are more accurate, in: Proceedings of ICONIP'96, Springer, Hong Kong, 1996, pp. 133-138.
    • (1996) Proceedings of ICONIP'96 , pp. 133-138
    • Shang, N.1    Breiman, L.2
  • 25
    • 0002814440 scopus 로고    scopus 로고
    • Neural networks in medical diagnosis: Comparison with other methods
    • A. Bulsari, et al. (Eds.), Proceedings of the International Conference on Engineering Applications with Neural Networks, London
    • B. Ster, A. Dobnikar, Neural networks in medical diagnosis: comparison with other methods, in: A. Bulsari, et al. (Eds.), Proceedings of the International Conference on Engineering Applications with Neural Networks, London, 1996, pp. 427-430.
    • (1996) , pp. 427-430
    • Ster, B.1    Dobnikar, A.2
  • 26
    • 0026931953 scopus 로고
    • Color quantization by dynamic programming and principal analysis
    • X. Wu, Color quantization by dynamic programming and principal analysis, ACM Trans. Graphics 11 (1992) 348-372.
    • (1992) ACM Trans. Graphics , vol.11 , pp. 348-372
    • Wu, X.1
  • 27
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing Gestalt clusters
    • C.T. Zahn, Graph-theoretical methods for detecting and describing Gestalt clusters, IEEE Trans. Comput. C-20 (1971) 68-86.
    • (1971) IEEE Trans. Comput. , vol.20 C , pp. 68-86
    • Zahn, C.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.