-
1
-
-
71149093724
-
How telomeres solve the end-protection problem
-
de Lange T. 2009. How telomeres solve the end-protection problem. Science 326:948–952. https://doi.org/10.1126/science.1170633.
-
(2009)
Science
, vol.326
, pp. 948-952
-
-
De Lange, T.1
-
2
-
-
0026735646
-
Telomere end-replication problem and cell aging
-
Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. 1992. Telomere end-replication problem and cell aging. J Mol Biol 225:951–960. https://doi.org/10.1016/0022-2836(92)90096-3.
-
(1992)
J Mol Biol
, vol.225
, pp. 951-960
-
-
Levy, M.Z.1
Allsopp, R.C.2
Futcher, A.B.3
Greider, C.W.4
Harley, C.B.5
-
3
-
-
0034200846
-
Telomeres and telomerase
-
Blackburn EH. 2000. Telomeres and telomerase. Keio J Med 49:59–65. https://doi.org/10.2302/kjm.49.59.
-
(2000)
Keio J Med
, vol.49
, pp. 59-65
-
-
Blackburn, E.H.1
-
4
-
-
2042429168
-
Regulation of telomerase by telomeric proteins
-
Smogorzewska A, de Lange T. 2004. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208. https://doi.org/10.1146/annurev.biochem.73.071403.160049.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 177-208
-
-
Smogorzewska, A.1
De Lange, T.2
-
5
-
-
84989277720
-
Genome-wide studies of telomere biology in budding yeast
-
Harari Y, Kupiec M. 2014. Genome-wide studies of telomere biology in budding yeast. Microb Cell 1:70–80. https://doi.org/10.15698/mic2014.01.132.
-
(2014)
Microb Cell
, vol.1
, pp. 70-80
-
-
Harari, Y.1
Kupiec, M.2
-
6
-
-
84896728101
-
Biology of telomeres: Lessons from budding yeast
-
Kupiec M. 2014. Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev 38:144–171. https://doi.org/10.1111/1574-6976.12054.
-
(2014)
FEMS Microbiol Rev
, vol.38
, pp. 144-171
-
-
Kupiec, M.1
-
7
-
-
2942532256
-
A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length
-
Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern MJ. 2004. A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101:8658–8663. https://doi.org/10.1073/pnas.0401263101.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 8658-8663
-
-
Askree, S.H.1
Yehuda, T.2
Smolikov, S.3
Gurevich, R.4
Hawk, J.5
Coker, C.6
Krauskopf, A.7
Kupiec, M.8
McEachern, M.J.9
-
8
-
-
33645793749
-
Telomere length as a quantitative trait: Genome-wide survey and genetic mapping of telomere length-control genes in yeast
-
Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, Kruglyak L, Simon JA, Bedalov A. 2006. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2:e35. https://doi.org/10.1371/journal.pgen.0020035.
-
(2006)
Plos Genet
, vol.2
-
-
Gatbonton, T.1
Imbesi, M.2
Nelson, M.3
Akey, J.M.4
Ruderfer, D.M.5
Kruglyak, L.6
Simon, J.A.7
Bedalov, A.8
-
9
-
-
42949168427
-
A systems-level approach to mapping the telomere length maintenance gene circuitry
-
Shachar R, Ungar L, Kupiec M, Ruppin E, Sharan R. 2008. A systems-level approach to mapping the telomere length maintenance gene circuitry. Mol Syst Biol 4:172. https://doi.org/10.1038/msb.2008.13.
-
(2008)
Mol Syst Biol
, vol.4
, pp. 172
-
-
Shachar, R.1
Ungar, L.2
Kupiec, M.3
Ruppin, E.4
Sharan, R.5
-
10
-
-
67651171456
-
A genome-wide screen for essential yeast genes that affect telomere length maintenance
-
Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M. 2009. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 37:3840–3849. https://doi.org/10.1093/nar/gkp259.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 3840-3849
-
-
Ungar, L.1
Yosef, N.2
Sela, Y.3
Sharan, R.4
Ruppin, E.5
Kupiec, M.6
-
11
-
-
0035149551
-
Remodeling of yeast genome expression in response to environmental changes
-
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12: 323–337. https://doi.org/10.1091/mbc.12.2.323.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 323-337
-
-
Causton, H.C.1
Ren, B.2
Koh, S.S.3
Harbison, C.T.4
Kanin, E.5
Jennings, E.G.6
Lee, T.I.7
True, H.L.8
Lander, E.S.9
Young, R.A.10
-
12
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257. https://doi.org/10.1091/mbc.11.12.4241.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
Carmel-Harel, O.4
Eisen, M.B.5
Storz, G.6
Botstein, D.7
Brown, P.O.8
-
13
-
-
67650376275
-
Adaptive prediction of environmental changes by microorganisms
-
Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y. 2009. Adaptive prediction of environmental changes by microorganisms. Nature 460:220–224. https://doi.org/10.1038/nature08112.
-
(2009)
Nature
, vol.460
, pp. 220-224
-
-
Mitchell, A.1
Romano, G.H.2
Groisman, B.3
Yona, A.4
Dekel, E.5
Kupiec, M.6
Dahan, O.7
Pilpel, Y.8
-
14
-
-
84944515047
-
Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling
-
Ho YH, Gasch AP. 2015. Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511. https://doi.org/10.1007/s00294-015-0491-0.
-
(2015)
Curr Genet
, vol.61
, pp. 503-511
-
-
Ho, Y.H.1
Gasch, A.P.2
-
15
-
-
84884691428
-
Environmental stresses disrupt telomere length homeostasis
-
Romano GH, Harari Y, Yehuda T, Podhorzer A, Rubinstein L, Shamir R, Gottlieb A, Silberberg Y, Pe’er D, Ruppin E, Sharan R, Kupiec M. 2013. Environmental stresses disrupt telomere length homeostasis. PLoS Genet 9:e1003721. https://doi.org/10.1371/journal.pgen.1003721.
-
(2013)
Plos Genet
, vol.9
-
-
Romano, G.H.1
Harari, Y.2
Yehuda, T.3
Podhorzer, A.4
Rubinstein, L.5
Shamir, R.6
Gottlieb, A.7
Silberberg, Y.8
Pe’Er, D.9
Ruppin, E.10
Sharan, R.11
Kupiec, M.12
-
16
-
-
84890364812
-
Nature vs nurture: Interplay between the genetic control of telomere length and environmental factors
-
Harari Y, Romano GH, Ungar L, Kupiec M. 2013. Nature vs nurture: interplay between the genetic control of telomere length and environmental factors. Cell Cycle 12:3465–3470. https://doi.org/10.4161/cc.26625.
-
(2013)
Cell Cycle
, vol.12
, pp. 3465-3470
-
-
Harari, Y.1
Romano, G.H.2
Ungar, L.3
Kupiec, M.4
-
17
-
-
0038701907
-
Biochemical aspects of telomerase function
-
Harrington L. 2003. Biochemical aspects of telomerase function. Cancer Lett 194:139–154. https://doi.org/10.1016/S0304-3835(02)00701-2.
-
(2003)
Cancer Lett
, vol.194
, pp. 139-154
-
-
Harrington, L.1
-
18
-
-
0024973811
-
A mutant with a defect in telomere elongation leads to senescence in yeast
-
Lundblad V, Szostak JW. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643. https://doi.org/10.1016/0092-8674(89)90132-3.
-
(1989)
Cell
, vol.57
, pp. 633-643
-
-
Lundblad, V.1
Szostak, J.W.2
-
19
-
-
0031810555
-
Severe growth defect in mouse cells lacking the telomerase RNA component
-
Niida H, Matsumoto T, Satoh H, Shiwa M, Tokutake Y, Furuichi Y, Shinkai Y. 1998. Severe growth defect in mouse cells lacking the telomerase RNA component. Nat Genet 19:203–206. https://doi.org/10.1038/580.
-
(1998)
Nat Genet
, vol.19
, pp. 203-206
-
-
Niida, H.1
Matsumoto, T.2
Satoh, H.3
Shiwa, M.4
Tokutake, Y.5
Furuichi, Y.6
Shinkai, Y.7
-
20
-
-
22944488871
-
Telomeres and human disease: Ageing, cancer and beyond
-
Blasco MA. 2005. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622. https://doi.org/10.1038/nrg1656.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 611-622
-
-
Blasco, M.A.1
-
21
-
-
0035929353
-
Switching and signaling at the telomere
-
Blackburn EH. 2001. Switching and signaling at the telomere. Cell 106: 661–673. https://doi.org/10.1016/S0092-8674(01)00492-5.
-
(2001)
Cell
, vol.106
, pp. 661-673
-
-
Blackburn, E.H.1
-
22
-
-
0037148271
-
Telomerase in the human organism
-
Collins K, Mitchell JR. 2002. Telomerase in the human organism. Oncogene 21:564–579. https://doi.org/10.1038/sj.onc.1205083.
-
(2002)
Oncogene
, vol.21
, pp. 564-579
-
-
Collins, K.1
Mitchell, J.R.2
-
23
-
-
50549218525
-
The limited in vitro lifetime of human diploid cell strains
-
Hayflick L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636. https://doi.org/10.1016/0014-4827(65)90211-9.
-
(1965)
Exp Cell Res
, vol.37
, pp. 614-636
-
-
Hayflick, L.1
-
24
-
-
0028673260
-
Telomerase, cell immortality, and cancer
-
Harley CB, Kim NW, Prowse KR, Weinrich SL, Hirsch KS, West MD, Bacchetti S, Hirte HW, Counter CM, Greider CW, Piatyszek MA, Wright WE, Shay JW. 1994. Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol 59:307–315. https://doi.org/10.1101/SQB.1994.059.01.035.
-
(1994)
Cold Spring Harb Symp Quant Biol
, vol.59
, pp. 307-315
-
-
Harley, C.B.1
Kim, N.W.2
Prowse, K.R.3
Weinrich, S.L.4
Hirsch, K.S.5
West, M.D.6
Bacchetti, S.7
Hirte, H.W.8
Counter, C.M.9
Greider, C.W.10
Piatyszek, M.A.11
Wright, W.E.12
Shay, J.W.13
-
25
-
-
0029895383
-
Refining the telomere-telomerase hypothesis of aging and cancer
-
Holt SE, Shay JW, Wright WE. 1996. Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol 14:836–839. https://doi.org/10.1038/nbt0796-836.
-
(1996)
Nat Biotechnol
, vol.14
, pp. 836-839
-
-
Holt, S.E.1
Shay, J.W.2
Wright, W.E.3
-
26
-
-
0010045614
-
Extension of life span by introduction of telomerase into normal human cells
-
Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. 1998. Extension of life span by introduction of telomerase into normal human cells. Science 279: 349–352. https://doi.org/10.1126/science.279.5349.349.
-
(1998)
Science
, vol.279
, pp. 349-352
-
-
Bodnar, A.G.1
Ouellette, M.2
Frolkis, M.3
Holt, S.E.4
Chiu, C.P.5
Morin, G.B.6
Harley, C.B.7
Shay, J.W.8
Lichtsteiner, S.9
Wright, W.E.10
-
27
-
-
0027266758
-
An alternative pathway for yeast telomere maintenance rescues est1- senescence
-
Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73:347–360. https://doi.org/10.1016/0092-8674(93)90234-H.
-
(1993)
Cell
, vol.73
, pp. 347-360
-
-
Lundblad, V.1
Blackburn, E.H.2
-
28
-
-
0029778954
-
A novel mechanism for telomere size control in Saccharomyces cerevisiae
-
Li B, Lustig AJ. 1996. A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev 10:1310–1326. https://doi.org/10.1101/gad.10.11.1310.
-
(1996)
Genes Dev
, vol.10
, pp. 1310-1326
-
-
Li, B.1
Lustig, A.J.2
-
29
-
-
65449187067
-
Control of telomere length by a trimming mechanism that involves generation of t-circles
-
Pickett HA, Cesare AJ, Johnston RL, Neumann AA, Reddel RR. 2009. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J 28:799–809. https://doi.org/10.1038/emboj.2009.42.
-
(2009)
EMBO J
, vol.28
, pp. 799-809
-
-
Pickett, H.A.1
Cesare, A.J.2
Johnston, R.L.3
Neumann, A.A.4
Reddel, R.R.5
-
30
-
-
0020965275
-
Occurrence and evolution of homogeneously staining regions may be due to breakage-fusion-bridge cycles following telomere loss
-
Cowell JK, Miller OJ. 1983. Occurrence and evolution of homogeneously staining regions may be due to breakage-fusion-bridge cycles following telomere loss. Chromosoma 88:216–221. https://doi.org/10.1007/BF00285623.
-
(1983)
Chromosoma
, vol.88
, pp. 216-221
-
-
Cowell, J.K.1
Miller, O.J.2
-
31
-
-
33749369156
-
Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication
-
Lazzerini Denchi E, Celli G, de Lange T. 2006. Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev 20:2648–2653. https://doi.org/10.1101/gad.1453606.
-
(2006)
Genes Dev
, vol.20
, pp. 2648-2653
-
-
Lazzerini Denchi, E.1
Celli, G.2
De Lange, T.3
-
32
-
-
62549145762
-
Toward accurate reconstruction of functional protein networks
-
Yosef N, Ungar L, Zalckvar E, Kimchi A, Kupiec M, Ruppin E, Sharan R. 2009. Toward accurate reconstruction of functional protein networks. Mol Syst Biol 5:248. https://doi.org/10.1038/msb.2009.3.
-
(2009)
Mol Syst Biol
, vol.5
, pp. 248
-
-
Yosef, N.1
Ungar, L.2
Zalckvar, E.3
Kimchi, A.4
Kupiec, M.5
Ruppin, E.6
Sharan, R.7
-
33
-
-
84871375832
-
Chromosomal duplication is a transient evolutionary solution to stress
-
Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, Kupiec M, Pilpel Y, Dahan O. 2012. Chromosomal duplication is a transient evolutionary solution to stress. Proc Natl Acad Sci U S A 109:21010–21015. https://doi.org/10.1073/pnas.1211150109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 21010-21015
-
-
Yona, A.H.1
Manor, Y.S.2
Herbst, R.H.3
Romano, G.H.4
Mitchell, A.5
Kupiec, M.6
Pilpel, Y.7
Dahan, O.8
-
34
-
-
80053151271
-
Alteration of ethanol tolerance caused by the deficiency in the genes associated with histone deacetylase complex in budding yeast
-
Matsuda T, Fujimura S, Suda H, Matsufuji Y, Nakagawa J. 2011. Alteration of ethanol tolerance caused by the deficiency in the genes associated with histone deacetylase complex in budding yeast. Biosci Biotechnol Biochem 75:1829–1831. https://doi.org/10.1271/bbb.110232.
-
(2011)
Biosci Biotechnol Biochem
, vol.75
, pp. 1829-1831
-
-
Matsuda, T.1
Fujimura, S.2
Suda, H.3
Matsufuji, Y.4
Nakagawa, J.5
-
35
-
-
84886717236
-
Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast
-
Yamamoto Y, Izawa S. 2013. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 18:974–984. https://doi.org/10.1111/gtc.12090.
-
(2013)
Genes Cells
, vol.18
, pp. 974-984
-
-
Yamamoto, Y.1
Izawa, S.2
-
36
-
-
0025279931
-
Telomeres shorten during ageing of human fibroblasts
-
Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460. https://doi.org/10.1038/345458a0.
-
(1990)
Nature
, vol.345
, pp. 458-460
-
-
Harley, C.B.1
Futcher, A.B.2
Greider, C.W.3
-
37
-
-
36248965748
-
Telomere length predicts survival independent of genetic influences
-
Bakaysa SL, Mucci LA, Slagboom PE, Boomsma DI, McClearn GE, Johansson B, Pedersen NL. 2007. Telomere length predicts survival independent of genetic influences. Aging Cell 6:769–774. https://doi.org/10.1111/j.1474-9726.2007.00340.x.
-
(2007)
Aging Cell
, vol.6
, pp. 769-774
-
-
Bakaysa, S.L.1
Mucci, L.A.2
Slagboom, P.E.3
Boomsma, D.I.4
McClearn, G.E.5
Johansson, B.6
Pedersen, N.L.7
-
38
-
-
0034648063
-
Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons
-
Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S. 2000. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 288:163–166. https://doi.org/10.1016/S0304-3940(00)01229-5.
-
(2000)
Neurosci Lett
, vol.288
, pp. 163-166
-
-
Satoh, T.1
Nakatsuka, D.2
Watanabe, Y.3
Nagata, I.4
Kikuchi, H.5
Namura, S.6
-
39
-
-
84874611617
-
Telomeres and age-related disease: How telomere biology informs clinical paradigms
-
Armanios M. 2013. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 123:996–1002. https://doi.org/10.1172/JCI66370.
-
(2013)
J Clin Invest
, vol.123
, pp. 996-1002
-
-
Armanios, M.1
-
40
-
-
84938086280
-
The short and long telomere syndromes: Paired paradigms for molecular medicine
-
Stanley SE, Armanios M. 2015. The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev 33:1–9. https://doi.org/10.1016/j.gde.2015.06.004.
-
(2015)
Curr Opin Genet Dev
, vol.33
, pp. 1-9
-
-
Stanley, S.E.1
Armanios, M.2
-
41
-
-
84855491182
-
Telomere length measurementcaveats and a critical assessment of the available technologies and tools
-
Aubert G, Hills M, Lansdorp PM. 2012. Telomere length measurementcaveats and a critical assessment of the available technologies and tools. Mutat Res 730:59–67. https://doi.org/10.1016/j.mrfmmm.2011.04.003.
-
(2012)
Mutat Res
, vol.730
, pp. 59-67
-
-
Aubert, G.1
Hills, M.2
Lansdorp, P.M.3
-
42
-
-
53349129578
-
Association of longer telomeres with better health in centenarians
-
Terry DF, Nolan VG, Andersen SL, Perls TT, Cawthon R. 2008. Association of longer telomeres with better health in centenarians. J Gerontol A Biol Sci Med Sci 63:809–812. https://doi.org/10.1093/gerona/63.8.809.
-
(2008)
J Gerontol a Biol Sci Med Sci
, vol.63
, pp. 809-812
-
-
Terry, D.F.1
Nolan, V.G.2
Ersen, S.L.3
Perls, T.T.4
Cawthon, R.5
-
43
-
-
0035162238
-
Role for telomere cap structure in meiosis
-
Maddar H, Ratzkovsky N, Krauskopf A. 2001. Role for telomere cap structure in meiosis. Mol Biol Cell 12:3191–3203. https://doi.org/10.1091/mbc.12.10.3191.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 3191-3203
-
-
Maddar, H.1
Ratzkovsky, N.2
Krauskopf, A.3
-
44
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA2043.0.CO;2-2.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
45
-
-
84903172957
-
Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups
-
Rubinstein L, Ungar L, Harari Y, Babin V, Ben-Aroya S, Merenyi G, Marjavaara L, Chabes A, Kupiec M. 2014. Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups. Nucleic Acids Res 42:6314–6325. https://doi.org/10.1093/nar/gku267.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 6314-6325
-
-
Rubinstein, L.1
Ungar, L.2
Harari, Y.3
Babin, V.4
Ben-Aroya, S.5
Merenyi, G.6
Marjavaara, L.7
Chabes, A.8
Kupiec, M.9
|