메뉴 건너뛰기




Volumn 8, Issue 4, 2017, Pages

Long telomeres do not affect cellular fitness in yeast

Author keywords

Aging; Cancer; Ethanol; Fitness; Telomere; Yeasts

Indexed keywords

ARTICLE; CELL AGING; CELL GROWTH; CELL VIABILITY; CELLULAR FITNESS; CELLULAR PARAMETERS; CONCENTRATION (PARAMETERS); CONTROLLED STUDY; DNA DAMAGE; FLOW CYTOMETRY; GENOMIC INSTABILITY; GROWTH RATE; HOMEOSTASIS; HUMAN; HUMAN CELL; MAMMAL CELL; MUTATIONAL ANALYSIS; NONHUMAN; PRIORITY JOURNAL; SENSITIVITY ANALYSIS; TELOMERE; TELOMERE LENGTH; TELOMERE SHORTENING; YEAST CELL; GENETICS; GROWTH, DEVELOPMENT AND AGING; MUTATION; PHYSIOLOGY; REPRODUCTIVE FITNESS; SACCHAROMYCES CEREVISIAE;

EID: 85029153164     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.01314-17     Document Type: Article
Times cited : (14)

References (45)
  • 1
    • 71149093724 scopus 로고    scopus 로고
    • How telomeres solve the end-protection problem
    • de Lange T. 2009. How telomeres solve the end-protection problem. Science 326:948–952. https://doi.org/10.1126/science.1170633.
    • (2009) Science , vol.326 , pp. 948-952
    • De Lange, T.1
  • 3
    • 0034200846 scopus 로고    scopus 로고
    • Telomeres and telomerase
    • Blackburn EH. 2000. Telomeres and telomerase. Keio J Med 49:59–65. https://doi.org/10.2302/kjm.49.59.
    • (2000) Keio J Med , vol.49 , pp. 59-65
    • Blackburn, E.H.1
  • 4
    • 2042429168 scopus 로고    scopus 로고
    • Regulation of telomerase by telomeric proteins
    • Smogorzewska A, de Lange T. 2004. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208. https://doi.org/10.1146/annurev.biochem.73.071403.160049.
    • (2004) Annu Rev Biochem , vol.73 , pp. 177-208
    • Smogorzewska, A.1    De Lange, T.2
  • 5
    • 84989277720 scopus 로고    scopus 로고
    • Genome-wide studies of telomere biology in budding yeast
    • Harari Y, Kupiec M. 2014. Genome-wide studies of telomere biology in budding yeast. Microb Cell 1:70–80. https://doi.org/10.15698/mic2014.01.132.
    • (2014) Microb Cell , vol.1 , pp. 70-80
    • Harari, Y.1    Kupiec, M.2
  • 6
    • 84896728101 scopus 로고    scopus 로고
    • Biology of telomeres: Lessons from budding yeast
    • Kupiec M. 2014. Biology of telomeres: lessons from budding yeast. FEMS Microbiol Rev 38:144–171. https://doi.org/10.1111/1574-6976.12054.
    • (2014) FEMS Microbiol Rev , vol.38 , pp. 144-171
    • Kupiec, M.1
  • 8
    • 33645793749 scopus 로고    scopus 로고
    • Telomere length as a quantitative trait: Genome-wide survey and genetic mapping of telomere length-control genes in yeast
    • Gatbonton T, Imbesi M, Nelson M, Akey JM, Ruderfer DM, Kruglyak L, Simon JA, Bedalov A. 2006. Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2:e35. https://doi.org/10.1371/journal.pgen.0020035.
    • (2006) Plos Genet , vol.2
    • Gatbonton, T.1    Imbesi, M.2    Nelson, M.3    Akey, J.M.4    Ruderfer, D.M.5    Kruglyak, L.6    Simon, J.A.7    Bedalov, A.8
  • 9
    • 42949168427 scopus 로고    scopus 로고
    • A systems-level approach to mapping the telomere length maintenance gene circuitry
    • Shachar R, Ungar L, Kupiec M, Ruppin E, Sharan R. 2008. A systems-level approach to mapping the telomere length maintenance gene circuitry. Mol Syst Biol 4:172. https://doi.org/10.1038/msb.2008.13.
    • (2008) Mol Syst Biol , vol.4 , pp. 172
    • Shachar, R.1    Ungar, L.2    Kupiec, M.3    Ruppin, E.4    Sharan, R.5
  • 10
    • 67651171456 scopus 로고    scopus 로고
    • A genome-wide screen for essential yeast genes that affect telomere length maintenance
    • Ungar L, Yosef N, Sela Y, Sharan R, Ruppin E, Kupiec M. 2009. A genome-wide screen for essential yeast genes that affect telomere length maintenance. Nucleic Acids Res 37:3840–3849. https://doi.org/10.1093/nar/gkp259.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3840-3849
    • Ungar, L.1    Yosef, N.2    Sela, Y.3    Sharan, R.4    Ruppin, E.5    Kupiec, M.6
  • 14
    • 84944515047 scopus 로고    scopus 로고
    • Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling
    • Ho YH, Gasch AP. 2015. Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511. https://doi.org/10.1007/s00294-015-0491-0.
    • (2015) Curr Genet , vol.61 , pp. 503-511
    • Ho, Y.H.1    Gasch, A.P.2
  • 16
    • 84890364812 scopus 로고    scopus 로고
    • Nature vs nurture: Interplay between the genetic control of telomere length and environmental factors
    • Harari Y, Romano GH, Ungar L, Kupiec M. 2013. Nature vs nurture: interplay between the genetic control of telomere length and environmental factors. Cell Cycle 12:3465–3470. https://doi.org/10.4161/cc.26625.
    • (2013) Cell Cycle , vol.12 , pp. 3465-3470
    • Harari, Y.1    Romano, G.H.2    Ungar, L.3    Kupiec, M.4
  • 17
    • 0038701907 scopus 로고    scopus 로고
    • Biochemical aspects of telomerase function
    • Harrington L. 2003. Biochemical aspects of telomerase function. Cancer Lett 194:139–154. https://doi.org/10.1016/S0304-3835(02)00701-2.
    • (2003) Cancer Lett , vol.194 , pp. 139-154
    • Harrington, L.1
  • 18
    • 0024973811 scopus 로고
    • A mutant with a defect in telomere elongation leads to senescence in yeast
    • Lundblad V, Szostak JW. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643. https://doi.org/10.1016/0092-8674(89)90132-3.
    • (1989) Cell , vol.57 , pp. 633-643
    • Lundblad, V.1    Szostak, J.W.2
  • 20
    • 22944488871 scopus 로고    scopus 로고
    • Telomeres and human disease: Ageing, cancer and beyond
    • Blasco MA. 2005. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622. https://doi.org/10.1038/nrg1656.
    • (2005) Nat Rev Genet , vol.6 , pp. 611-622
    • Blasco, M.A.1
  • 21
    • 0035929353 scopus 로고    scopus 로고
    • Switching and signaling at the telomere
    • Blackburn EH. 2001. Switching and signaling at the telomere. Cell 106: 661–673. https://doi.org/10.1016/S0092-8674(01)00492-5.
    • (2001) Cell , vol.106 , pp. 661-673
    • Blackburn, E.H.1
  • 22
    • 0037148271 scopus 로고    scopus 로고
    • Telomerase in the human organism
    • Collins K, Mitchell JR. 2002. Telomerase in the human organism. Oncogene 21:564–579. https://doi.org/10.1038/sj.onc.1205083.
    • (2002) Oncogene , vol.21 , pp. 564-579
    • Collins, K.1    Mitchell, J.R.2
  • 23
    • 50549218525 scopus 로고
    • The limited in vitro lifetime of human diploid cell strains
    • Hayflick L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636. https://doi.org/10.1016/0014-4827(65)90211-9.
    • (1965) Exp Cell Res , vol.37 , pp. 614-636
    • Hayflick, L.1
  • 25
    • 0029895383 scopus 로고    scopus 로고
    • Refining the telomere-telomerase hypothesis of aging and cancer
    • Holt SE, Shay JW, Wright WE. 1996. Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol 14:836–839. https://doi.org/10.1038/nbt0796-836.
    • (1996) Nat Biotechnol , vol.14 , pp. 836-839
    • Holt, S.E.1    Shay, J.W.2    Wright, W.E.3
  • 27
    • 0027266758 scopus 로고
    • An alternative pathway for yeast telomere maintenance rescues est1- senescence
    • Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73:347–360. https://doi.org/10.1016/0092-8674(93)90234-H.
    • (1993) Cell , vol.73 , pp. 347-360
    • Lundblad, V.1    Blackburn, E.H.2
  • 28
    • 0029778954 scopus 로고    scopus 로고
    • A novel mechanism for telomere size control in Saccharomyces cerevisiae
    • Li B, Lustig AJ. 1996. A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev 10:1310–1326. https://doi.org/10.1101/gad.10.11.1310.
    • (1996) Genes Dev , vol.10 , pp. 1310-1326
    • Li, B.1    Lustig, A.J.2
  • 29
    • 65449187067 scopus 로고    scopus 로고
    • Control of telomere length by a trimming mechanism that involves generation of t-circles
    • Pickett HA, Cesare AJ, Johnston RL, Neumann AA, Reddel RR. 2009. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J 28:799–809. https://doi.org/10.1038/emboj.2009.42.
    • (2009) EMBO J , vol.28 , pp. 799-809
    • Pickett, H.A.1    Cesare, A.J.2    Johnston, R.L.3    Neumann, A.A.4    Reddel, R.R.5
  • 30
    • 0020965275 scopus 로고
    • Occurrence and evolution of homogeneously staining regions may be due to breakage-fusion-bridge cycles following telomere loss
    • Cowell JK, Miller OJ. 1983. Occurrence and evolution of homogeneously staining regions may be due to breakage-fusion-bridge cycles following telomere loss. Chromosoma 88:216–221. https://doi.org/10.1007/BF00285623.
    • (1983) Chromosoma , vol.88 , pp. 216-221
    • Cowell, J.K.1    Miller, O.J.2
  • 31
    • 33749369156 scopus 로고    scopus 로고
    • Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication
    • Lazzerini Denchi E, Celli G, de Lange T. 2006. Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev 20:2648–2653. https://doi.org/10.1101/gad.1453606.
    • (2006) Genes Dev , vol.20 , pp. 2648-2653
    • Lazzerini Denchi, E.1    Celli, G.2    De Lange, T.3
  • 34
    • 80053151271 scopus 로고    scopus 로고
    • Alteration of ethanol tolerance caused by the deficiency in the genes associated with histone deacetylase complex in budding yeast
    • Matsuda T, Fujimura S, Suda H, Matsufuji Y, Nakagawa J. 2011. Alteration of ethanol tolerance caused by the deficiency in the genes associated with histone deacetylase complex in budding yeast. Biosci Biotechnol Biochem 75:1829–1831. https://doi.org/10.1271/bbb.110232.
    • (2011) Biosci Biotechnol Biochem , vol.75 , pp. 1829-1831
    • Matsuda, T.1    Fujimura, S.2    Suda, H.3    Matsufuji, Y.4    Nakagawa, J.5
  • 35
    • 84886717236 scopus 로고    scopus 로고
    • Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast
    • Yamamoto Y, Izawa S. 2013. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 18:974–984. https://doi.org/10.1111/gtc.12090.
    • (2013) Genes Cells , vol.18 , pp. 974-984
    • Yamamoto, Y.1    Izawa, S.2
  • 36
    • 0025279931 scopus 로고
    • Telomeres shorten during ageing of human fibroblasts
    • Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460. https://doi.org/10.1038/345458a0.
    • (1990) Nature , vol.345 , pp. 458-460
    • Harley, C.B.1    Futcher, A.B.2    Greider, C.W.3
  • 38
    • 0034648063 scopus 로고    scopus 로고
    • Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons
    • Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S. 2000. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 288:163–166. https://doi.org/10.1016/S0304-3940(00)01229-5.
    • (2000) Neurosci Lett , vol.288 , pp. 163-166
    • Satoh, T.1    Nakatsuka, D.2    Watanabe, Y.3    Nagata, I.4    Kikuchi, H.5    Namura, S.6
  • 39
    • 84874611617 scopus 로고    scopus 로고
    • Telomeres and age-related disease: How telomere biology informs clinical paradigms
    • Armanios M. 2013. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 123:996–1002. https://doi.org/10.1172/JCI66370.
    • (2013) J Clin Invest , vol.123 , pp. 996-1002
    • Armanios, M.1
  • 40
    • 84938086280 scopus 로고    scopus 로고
    • The short and long telomere syndromes: Paired paradigms for molecular medicine
    • Stanley SE, Armanios M. 2015. The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev 33:1–9. https://doi.org/10.1016/j.gde.2015.06.004.
    • (2015) Curr Opin Genet Dev , vol.33 , pp. 1-9
    • Stanley, S.E.1    Armanios, M.2
  • 41
    • 84855491182 scopus 로고    scopus 로고
    • Telomere length measurementcaveats and a critical assessment of the available technologies and tools
    • Aubert G, Hills M, Lansdorp PM. 2012. Telomere length measurementcaveats and a critical assessment of the available technologies and tools. Mutat Res 730:59–67. https://doi.org/10.1016/j.mrfmmm.2011.04.003.
    • (2012) Mutat Res , vol.730 , pp. 59-67
    • Aubert, G.1    Hills, M.2    Lansdorp, P.M.3
  • 43
    • 0035162238 scopus 로고    scopus 로고
    • Role for telomere cap structure in meiosis
    • Maddar H, Ratzkovsky N, Krauskopf A. 2001. Role for telomere cap structure in meiosis. Mol Biol Cell 12:3191–3203. https://doi.org/10.1091/mbc.12.10.3191.
    • (2001) Mol Biol Cell , vol.12 , pp. 3191-3203
    • Maddar, H.1    Ratzkovsky, N.2    Krauskopf, A.3
  • 44
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA2043.0.CO;2-2.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.