메뉴 건너뛰기




Volumn 132, Issue , 2017, Pages 88-101

Hyperspectral dimensionality reduction for biophysical variable statistical retrieval

Author keywords

ARTMO; Biophysical parameter retrieval; Hyperspectral; Machine learning regression algorithms; Spectral dimensionality reduction methods; Vegetation properties

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOPHYSICS; COMPUTATIONAL EFFICIENCY; DATA HANDLING; HYPERSPECTRAL IMAGING; LEARNING ALGORITHMS; LEARNING SYSTEMS; REGRESSION ANALYSIS; UNCERTAINTY ANALYSIS; VEGETATION;

EID: 85029070767     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2017.08.012     Document Type: Article
Times cited : (96)

References (73)
  • 1
    • 79960121421 scopus 로고    scopus 로고
    • A cure for variance inflation in high dimensional kernel principal component analysis
    • Abrahamsen, T., Hansen, L., A cure for variance inflation in high dimensional kernel principal component analysis. J. Mach. Learn. Res. 12 (2011), 2027–2044.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2027-2044
    • Abrahamsen, T.1    Hansen, L.2
  • 2
    • 52749097639 scopus 로고    scopus 로고
    • Advances and limitations in a parametric geometric correction of CHRIS/PROBA data
    • In: Proceedings of the 3rd CHRIS/Proba Workshop, ESA/ESRIN, Frascati, Italy.
    • Alonso, L., Moreno, J., 2005. Advances and limitations in a parametric geometric correction of CHRIS/PROBA data. In: Proceedings of the 3rd CHRIS/Proba Workshop, ESA/ESRIN, Frascati, Italy.
    • (2005)
    • Alonso, L.1    Moreno, J.2
  • 3
    • 85032751590 scopus 로고    scopus 로고
    • Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods
    • Arenas-Garcia, J., Petersen, K., Camps-Valls, G., Hansen, L., Kernel multivariate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods. IEEE Signal Process. Mag. 30 (2013), 16–29.
    • (2013) IEEE Signal Process. Mag. , vol.30 , pp. 16-29
    • Arenas-Garcia, J.1    Petersen, K.2    Camps-Valls, G.3    Hansen, L.4
  • 5
    • 84881219181 scopus 로고    scopus 로고
    • GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production
    • Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B., GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 137 (2013), 299–309.
    • (2013) Remote Sens. Environ. , vol.137 , pp. 299-309
    • Baret, F.1    Weiss, M.2    Lacaze, R.3    Camacho, F.4    Makhmara, H.5    Pacholcyzk, P.6    Smets, B.7
  • 6
    • 34047168538 scopus 로고    scopus 로고
    • A unified approach to PCA, PLS, MLRA and CCA
    • Borga, M., Landelius, T., Knutsson, H., 1997. A unified approach to PCA, PLS, MLRA and CCA.
    • (1997)
    • Borga, M.1    Landelius, T.2    Knutsson, H.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 84874518998 scopus 로고    scopus 로고
    • Active learning: any value for classification of remotely sensed data?
    • Crawford, M., Tuia, D., Yang, H., Active learning: any value for classification of remotely sensed data?. Proc. IEEE 101 (2013), 593–608, 10.1109/JPROC.2012.2231951.
    • (2013) Proc. IEEE , vol.101 , pp. 593-608
    • Crawford, M.1    Tuia, D.2    Yang, H.3
  • 11
    • 84900440899 scopus 로고    scopus 로고
    • Assessment of the impact of dimensionality reduction methods on information classes and classifiers for hyperspectral image classification by multiple classifier system
    • Damodaran, B.B., Nidamanuri, R.R., Assessment of the impact of dimensionality reduction methods on information classes and classifiers for hyperspectral image classification by multiple classifier system. Adv. Space Res. 53 (2014), 1720–1734.
    • (2014) Adv. Space Res. , vol.53 , pp. 1720-1734
    • Damodaran, B.B.1    Nidamanuri, R.R.2
  • 12
    • 84872176008 scopus 로고    scopus 로고
    • A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems
    • Delegido, J., Verrelst, J., Meza, C., Rivera, J., Alonso, L., Moreno, J., A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 46 (2013), 42–52.
    • (2013) Eur. J. Agron. , vol.46 , pp. 42-52
    • Delegido, J.1    Verrelst, J.2    Meza, C.3    Rivera, J.4    Alonso, L.5    Moreno, J.6
  • 13
    • 85017524071 scopus 로고    scopus 로고
    • The fluorescence explorer mission concept-ESA's Earth explorer 8
    • Drusch, M., et al. The fluorescence explorer mission concept-ESA's Earth explorer 8. IEEE Trans. Geosci. Remote Sens., 2016, 1–12.
    • (2016) IEEE Trans. Geosci. Remote Sens. , pp. 1-12
    • Drusch, M.1
  • 14
    • 84928672637 scopus 로고    scopus 로고
    • Multi-method ensemble selection of spectral bands related to leaf biochemistry
    • Feilhauer, H., Asner, G.P., Martin, R.E., Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 164 (2015), 57–65.
    • (2015) Remote Sens. Environ. , vol.164 , pp. 57-65
    • Feilhauer, H.1    Asner, G.P.2    Martin, R.E.3
  • 16
    • 85029130376 scopus 로고    scopus 로고
    • Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns
    • In: Proceedings of the SPARC Workshop.
    • Fernández, G., Moreno, J., Gandía, S., Martínez, B., Vuolo, F., Morales, F., 2005. Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 campaigns. In: Proceedings of the SPARC Workshop.
    • (2005)
    • Fernández, G.1    Moreno, J.2    Gandía, S.3    Martínez, B.4    Vuolo, F.5    Morales, F.6
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman, J., Hastie, T., Tibshirani, R., Additive logistic regression: a statistical view of boosting. Ann. Stat. 28 (2000), 337–407.
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 0034482939 scopus 로고    scopus 로고
    • Optical–biophysical relationships of vegetation spectra without background contamination
    • Gao, X., Huete, A.R., Ni, W., Miura, T., Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 74 (2000), 609–620.
    • (2000) Remote Sens. Environ. , vol.74 , pp. 609-620
    • Gao, X.1    Huete, A.R.2    Ni, W.3    Miura, T.4
  • 19
    • 84856976376 scopus 로고    scopus 로고
    • Kernel entropy component analysis for remote sensing image clustering
    • Gómez-Chova, L., Jenssen, R., Camps-Valls, G., Kernel entropy component analysis for remote sensing image clustering. IEEE Geosci. Remote Sens. Lett. 9 (2012), 312–316, 10.1109/LGRS.2011.2167212.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , pp. 312-316
    • Gómez-Chova, L.1    Jenssen, R.2    Camps-Valls, G.3
  • 20
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Green, A.A., Berman, M., Switzer, P., Craig, M.D., A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26 (1988), 65–74, 10.1109/36.3001.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 21
    • 29044440363 scopus 로고    scopus 로고
    • A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns
    • Guanter, L., Alonso, L., Moreno, J., A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Trans. Geosci. Remote Sens. 43 (2005), 2908–2917.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 2908-2917
    • Guanter, L.1    Alonso, L.2    Moreno, J.3
  • 23
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan, M.T., Menhaj, M.B., Training feedforward networks with the marquardt algorithm. IEEE Trans. Neural Networks 5 (1994), 989–993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 24
    • 0003413187 scopus 로고    scopus 로고
    • Neural Networks – A Comprehensive Foundation
    • second ed. Prentice Hall
    • Haykin, S., Neural Networks – A Comprehensive Foundation. second ed., 1999, Prentice Hall.
    • (1999)
    • Haykin, S.1
  • 25
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling, H., Relations between two sets of variates. Biometrika 28 (1936), 321–377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 26
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14 (1968), 55–63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.1
  • 29
    • 0003946510 scopus 로고
    • Principal Component Analysis
    • Springer Verlag New York
    • Jolliffe, I., Principal Component Analysis. 1986, Springer Verlag, New York.
    • (1986)
    • Jolliffe, I.1
  • 31
    • 84939542542 scopus 로고    scopus 로고
    • Dimensionality reduction via regression in hyperspectral imagery
    • Laparra, V., Malo, J., Camps-Valls, G., Dimensionality reduction via regression in hyperspectral imagery. IEEE J. Sel. Top. Sign. Proces. 9 (2015), 1026–1036.
    • (2015) IEEE J. Sel. Top. Sign. Proces. , vol.9 , pp. 1026-1036
    • Laparra, V.1    Malo, J.2    Camps-Valls, G.3
  • 32
    • 49749112240 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction
    • Lee, J.A., Verleysen, M., 2007. Nonlinear dimensionality reduction.
    • (2007)
    • Lee, J.A.1    Verleysen, M.2
  • 33
    • 0003602164 scopus 로고    scopus 로고
    • Feature extraction, construction and selection: a data mining perspective
    • Liu, H., Motoda, H., 1998. Feature extraction, construction and selection: a data mining perspective.
    • (1998)
    • Liu, H.1    Motoda, H.2
  • 34
    • 84959878017 scopus 로고    scopus 로고
    • Estimating the crop leaf area index using hyperspectral remote sensing
    • Liu, K., Zhou, Q.B., Wu, W.B., Xia, T., Tang, H.J., Estimating the crop leaf area index using hyperspectral remote sensing. J. Integr. Agric. 15 (2016), 475–491.
    • (2016) J. Integr. Agric. , vol.15 , pp. 475-491
    • Liu, K.1    Zhou, Q.B.2    Wu, W.B.3    Xia, T.4    Tang, H.J.5
  • 35
    • 85029085508 scopus 로고    scopus 로고
    • Fusing remote sensing images using a statistical model
    • Luo, X.Q., Wu, X.J., Fusing remote sensing images using a statistical model. Appl. Mech. Mater., 2012, 263–266.
    • (2012) Appl. Mech. Mater. , pp. 263-266
    • Luo, X.Q.1    Wu, X.J.2
  • 36
    • 84907008681 scopus 로고    scopus 로고
    • Regional and entropy component analysis based remote sensing images fusion
    • Luo, X.Q., Wu, X.J., Zhang, Z., Regional and entropy component analysis based remote sensing images fusion. J. Intell. Fuzzy Syst., 2013.
    • (2013) J. Intell. Fuzzy Syst.
    • Luo, X.Q.1    Wu, X.J.2    Zhang, Z.3
  • 37
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • MacKay, D.J., Information-based objective functions for active data selection. Neural Comput. 4 (1992), 590–604.
    • (1992) Neural Comput. , vol.4 , pp. 590-604
    • MacKay, D.J.1
  • 38
    • 51049120933 scopus 로고    scopus 로고
    • Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
    • le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J.Y., Bréda, N., Genet, H., Davi, H., Dufrêne, E., Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112 (2008), 3846–3864.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3846-3864
    • le Maire, G.1    François, C.2    Soudani, K.3    Berveiller, D.4    Pontailler, J.Y.5    Bréda, N.6    Genet, H.7    Davi, H.8    Dufrêne, E.9
  • 40
    • 0018468345 scopus 로고
    • Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • McKay, M., Beckman, R., Conover, W., Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (1979), 239–245.
    • (1979) Technometrics , vol.21 , pp. 239-245
    • McKay, M.1    Beckman, R.2    Conover, W.3
  • 41
    • 79951820684 scopus 로고    scopus 로고
    • Kernel maximum autocorrelation factor and minimum noise fraction transformations
    • Nielsen, A.A., Kernel maximum autocorrelation factor and minimum noise fraction transformations. IEEE Trans. Image Process. 20 (2011), 612–624, 10.1109/TIP.2010.2076296.
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 612-624
    • Nielsen, A.A.1
  • 42
    • 21544460386 scopus 로고    scopus 로고
    • Canonical ridge analysis with ridge parameter optimization
    • Nielsen, F., Hansen, L., Strother, S., Canonical ridge analysis with ridge parameter optimization. NeuroImage, 7, 1998.
    • (1998) NeuroImage , vol.7
    • Nielsen, F.1    Hansen, L.2    Strother, S.3
  • 43
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K., On lines and planes of closest fit to systems of points in space. Phil. Mag. 2 (1901), 559–572.
    • (1901) Phil. Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 45
    • 25144451568 scopus 로고
    • Non-linear pls modelling using neural networks
    • Qin, S., McAvoy, T., Non-linear pls modelling using neural networks. Comput. Chem. Eng. 23 (1992), 395–411.
    • (1992) Comput. Chem. Eng. , vol.23 , pp. 395-411
    • Qin, S.1    McAvoy, T.2
  • 46
    • 25444448065 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning
    • The MIT Press New York
    • Rasmussen, C.E., Williams, C.K.I., Gaussian Processes for Machine Learning. 2006, The MIT Press, New York.
    • (2006)
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 48
    • 84986898449 scopus 로고    scopus 로고
    • On the semi-automatic retrieval of biophysical parameters based on spectral index optimization
    • Rivera, J., Verrelst, J., Delegido, J., Veroustraete, F., Moreno, J., On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens. 6:6 (2014), 4924–4951.
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 4924-4951
    • Rivera, J.1    Verrelst, J.2    Delegido, J.3    Veroustraete, F.4    Moreno, J.5
  • 49
    • 84881513198 scopus 로고    scopus 로고
    • Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model
    • Rivera, J., Verrelst, J., Leonenko, G., Moreno, J., Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens. 5 (2013), 3280–3304.
    • (2013) Remote Sens. , vol.5 , pp. 3280-3304
    • Rivera, J.1    Verrelst, J.2    Leonenko, G.3    Moreno, J.4
  • 50
    • 84855449469 scopus 로고    scopus 로고
    • Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission
    • Roberts, D., Quattrochi, D., Hulley, G., Hook, S., Green, R., Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission. Remote Sens. Environ. 117 (2012), 83–101.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 83-101
    • Roberts, D.1    Quattrochi, D.2    Hulley, G.3    Hook, S.4    Green, R.5
  • 51
    • 85015095443 scopus 로고    scopus 로고
    • Nonlinear partial least squares: an overview
    • Rosipal, R., 2010. Nonlinear partial least squares: an overview.
    • (2010)
    • Rosipal, R.1
  • 53
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf, B., Smola, A., MÃller, K.R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 (1998), 1299–1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    MÃller, K.R.3
  • 54
    • 14644392676 scopus 로고    scopus 로고
    • Kernel Methods for Pattern Analysis
    • Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis.
    • (2004)
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 55
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J., Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999), 293–300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 56
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensingimage classification
    • Tuia, D., Volpi, M., Copa, L., Kanevski, M., Muñoz-Marí, J., A survey of active learning algorithms for supervised remote sensingimage classification. IEEE J. Sel. Top. Sign. Proces. 4 (2011), 606–617.
    • (2011) IEEE J. Sel. Top. Sign. Proces. , vol.4 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Muñoz-Marí, J.5
  • 57
    • 84905913009 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral subspace learning based on a generalized eigenvalue problem for regression and dimensionality reduction
    • Uto, K., Kosugi, Y., Saito, G., Semi-supervised hyperspectral subspace learning based on a generalized eigenvalue problem for regression and dimensionality reduction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (2014), 2583–2599.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.7 , pp. 2583-2599
    • Uto, K.1    Kosugi, Y.2    Saito, G.3
  • 59
    • 84899551777 scopus 로고    scopus 로고
    • Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset
    • Van Wittenberghe, S., Verrelst, J., Rivera, J.P., Alonso, L., Moreno, J., Samson, R., Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset. J. Photochem. Photobiol., B 134 (2014), 37–48.
    • (2014) J. Photochem. Photobiol., B , vol.134 , pp. 37-48
    • Van Wittenberghe, S.1    Verrelst, J.2    Rivera, J.P.3    Alonso, L.4    Moreno, J.5    Samson, R.6
  • 60
    • 43949131424 scopus 로고    scopus 로고
    • Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products
    • Verger, A., Baret, F., Weiss, M., Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products. Remote Sens. Environ. 112 (2008), 2789–2803.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2789-2803
    • Verger, A.1    Baret, F.2    Weiss, M.3
  • 61
    • 0021644260 scopus 로고
    • Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
    • Verhoef, W., Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 16 (1984), 125–141.
    • (1984) Remote Sens. Environ. , vol.16 , pp. 125-141
    • Verhoef, W.1
  • 62
    • 34249781732 scopus 로고    scopus 로고
    • Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies
    • Verhoef, W., Jia, L., Xiao, Q., Su, Z., Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Trans. Geosci. Remote Sens. 45 (2007), 1808–1822.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 1808-1822
    • Verhoef, W.1    Jia, L.2    Xiao, Q.3    Su, Z.4
  • 66
    • 83455181750 scopus 로고    scopus 로고
    • Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
    • Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J., Camps-Valls, G., Moreno, J., Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 118 (2012), 127–139.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 127-139
    • Verrelst, J.1    Muñoz, J.2    Alonso, L.3    Delegido, J.4    Rivera, J.5    Camps-Valls, G.6    Moreno, J.7
  • 67
    • 84886795785 scopus 로고    scopus 로고
    • Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval
    • Verrelst, J., Rivera, J., Moreno, J., Camps-Valls, G., Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote Sens. 86 (2013), 157–167.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.86 , pp. 157-167
    • Verrelst, J.1    Rivera, J.2    Moreno, J.3    Camps-Valls, G.4
  • 70
    • 84930960442 scopus 로고    scopus 로고
    • Global sensitivity analysis of the scope model: what drives simulated canopy-leaving sun-induced fluorescence?
    • Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., Global sensitivity analysis of the scope model: what drives simulated canopy-leaving sun-induced fluorescence?. Remote Sens. Environ. 166 (2015), 8–21.
    • (2015) Remote Sens. Environ. , vol.166 , pp. 8-21
    • Verrelst, J.1    Rivera, J.P.2    van der Tol, C.3    Magnani, F.4    Mohammed, G.5    Moreno, J.6
  • 71
    • 84870653681 scopus 로고    scopus 로고
    • Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data
    • Verrelst, J., Romijn, E., Kooistra, L., Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sens. 4 (2012), 2866–2889.
    • (2012) Remote Sens. , vol.4 , pp. 2866-2889
    • Verrelst, J.1    Romijn, E.2    Kooistra, L.3
  • 72
    • 8844258255 scopus 로고
    • Non-linear Estimation by Iterative Least Procedures Squares
    • Wold, H., 1966. Non-linear Estimation by Iterative Least Procedures Squares.
    • (1966)
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.