메뉴 건너뛰기




Volumn 47, Issue 10, 2017, Pages 2727-2739

Nearest neighbor classification for high-speed big data streams using spark

Author keywords

Apache Spark; Big data; Data streams; Distributed computing; Instance reduction; Machine learning; Nearest neighbor

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER HARDWARE DESCRIPTION LANGUAGES; COMPUTER SCIENCE; DATA COMMUNICATION SYSTEMS; DATA MINING; DISTRIBUTED COMPUTER SYSTEMS; ELECTRIC SPARKS; LEARNING ALGORITHMS; LEARNING SYSTEMS; METADATA; NEAREST NEIGHBOR SEARCH; PERSONNEL TRAINING;

EID: 85028953120     PISSN: 21682216     EISSN: 21682232     Source Type: Journal    
DOI: 10.1109/TSMC.2017.2700889     Document Type: Article
Times cited : (82)

References (52)
  • 3
    • 84946490063 scopus 로고    scopus 로고
    • Efficient mining of high-speed uncertain data streams
    • D. Han, C. G. Giraud-Carrier, and S. Li, "Efficient mining of high-speed uncertain data streams," Appl. Intell., vol. 43, no. 4, pp. 773-785, 2015.
    • (2015) Appl. Intell. , vol.43 , Issue.4 , pp. 773-785
    • Han, D.1    Giraud-Carrier, C.G.2    Li, S.3
  • 5
    • 0041912948 scopus 로고    scopus 로고
    • Evolving data into mining solutions for insights
    • Aug
    • U. Fayyad and R. Uthurusamy, "Evolving data into mining solutions for insights," Commun. ACM, vol. 45, no. 8, pp. 28-31, Aug. 2002.
    • (2002) Commun. ACM , vol.45 , Issue.8 , pp. 28-31
    • Fayyad, U.1    Uthurusamy, R.2
  • 6
    • 85030100884 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: Http://doi.acm.org/10.1145/545151.545174
  • 7
    • 84915782633 scopus 로고    scopus 로고
    • Big data with cloud computing: An insight on the computing environment, mapreduce, and programming frameworks
    • A. Fernández et al., "Big data with cloud computing: An insight on the computing environment, mapreduce, and programming frameworks," Wiley Interdiscipl. Rev. Data Min. Knowl. Disc., vol. 4, no. 5, pp. 380-409, 2014.
    • (2014) Wiley Interdiscipl. Rev. Data Min. Knowl. Disc. , vol.4 , Issue.5 , pp. 380-409
    • Fernández, A.1
  • 8
    • 85030321143 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters," in Proc. OSDI, San Francisco, CA, USA, 2004, pp. 137-150.
    • (2004) Proc. OSDI, San Francisco, CA, USA , pp. 137-150
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 85017393334 scopus 로고    scopus 로고
    • Apache Spark: Lightning-Fast Cluster Computing. [Online]. Accessed on Jan. 2017. [Online]. Available
    • Apache Spark: Lightning-Fast Cluster Computing. (2017). Apache Spark. [Online]. Accessed on Jan. 2017. [Online]. Available: Https://spark.apache.org/
    • (2017) Apache Spark
  • 11
    • 0004267735 scopus 로고    scopus 로고
    • Dordrecht, The Netherlands, Kluwer
    • D. Aha, Lazy Learning. Dordrecht, The Netherlands, Kluwer, 1997.
    • (1997) Lazy Learning
    • Aha, D.1
  • 17
    • 77749299167 scopus 로고    scopus 로고
    • Apache Hadoop Project [Online]. Accessed on Jan. 2017. [Online]. Available
    • Apache Hadoop Project. (2017). Apache Hadoop. [Online]. Accessed on Jan. 2017. [Online]. Available: Http://hadoop.apache.org/
    • (2017) Apache Hadoop
  • 18
    • 84962792170 scopus 로고    scopus 로고
    • Attribute equilibrium dominance reduction accelerator (DCCAEDR) based on distributed coevolutionary cloud and its application in medical records
    • Mar
    • W.-P. Ding, C.-T. Lin, M. Prasad, S.-B. Chen, and Z.-J. Guan, "Attribute equilibrium dominance reduction accelerator (DCCAEDR) based on distributed coevolutionary cloud and its application in medical records," IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 3, pp. 384-400, Mar. 2016.
    • (2016) IEEE Trans. Syst., Man, Cybern., Syst. , vol.46 , Issue.3 , pp. 384-400
    • Ding, W.-P.1    Lin, C.-T.2    Prasad, M.3    Chen, S.-B.4    Guan, Z.-J.5
  • 19
    • 84962799392 scopus 로고    scopus 로고
    • FiDoop: Parallel mining of frequent itemsets using MapReduce
    • Mar
    • Y. Xun, J. Zhang, and X. Qin, "FiDoop: Parallel mining of frequent itemsets using MapReduce," IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 3, pp. 313-325, Mar. 2016.
    • (2016) IEEE Trans. Syst., Man, Cybern., Syst. , vol.46 , Issue.3 , pp. 313-325
    • Xun, Y.1    Zhang, J.2    Qin, X.3
  • 20
    • 84991756964 scopus 로고    scopus 로고
    • Mapreduce is good enough? If all you have is a hammer, throw away everything that's not a nail!
    • J. Lin, "Mapreduce is good enough? If all you have is a hammer, throw away everything that's not a nail!" Big Data, vol. 1, no. 1, pp. 28-37, 2012.
    • (2012) Big Data , vol.1 , Issue.1 , pp. 28-37
    • Lin, J.1
  • 21
    • 84979900694 scopus 로고    scopus 로고
    • Mllib: Machine learning in apache spark
    • X. Meng et al., "Mllib: Machine learning in apache spark," J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235-1241, 2016.
    • (2016) J. Mach. Learn. Res. , vol.17 , Issue.1 , pp. 1235-1241
    • Meng, X.1
  • 22
  • 24
    • 85011884671 scopus 로고    scopus 로고
    • Ensemble learning for data stream analysis: A survey
    • Sep.
    • B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Wózniak, "Ensemble learning for data stream analysis: A survey," Inf. Fusion, vol. 37, pp. 132-156, Sep. 2017.
    • Inf. Fusion , vol.37 , Issue.2017 , pp. 132-156
    • Krawczyk, B.1    Minku, L.L.2    Gama, J.3    Stefanowski, J.4    Wózniak, M.5
  • 26
    • 85013498914 scopus 로고    scopus 로고
    • A survey on data preprocessing for data stream mining: Current status and future directions
    • May
    • S. Ramírez-Gallego, B. Krawczyk, S. García, M. Wózniak, and F. Herrera, "A survey on data preprocessing for data stream mining: Current status and future directions," Neurocomputing, vol. 239, pp. 39-57, May 2017.
    • (2017) Neurocomputing , vol.239 , pp. 39-57
    • Ramírez-Gallego, S.1    Krawczyk, B.2    García, S.3    Wózniak, M.4    Herrera, F.5
  • 28
    • 84969677534 scopus 로고    scopus 로고
    • Detecting and reacting to changes in sensing units: The active classifier case
    • Mar
    • C. Alippi, D. Liu, D. Zhao, and L. Bu, "Detecting and reacting to changes in sensing units: The active classifier case," IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 3, pp. 353-362, Mar. 2014.
    • (2014) IEEE Trans. Syst., Man, Cybern., Syst. , vol.44 , Issue.3 , pp. 353-362
    • Alippi, C.1    Liu, D.2    Zhao, D.3    Bu, L.4
  • 29
    • 84959534981 scopus 로고    scopus 로고
    • Precision-bounded access control using sliding-window query views for privacy-preserving data streams
    • Jul
    • Z. Pervaiz, A. Ghafoor, and W. G. Aref, "Precision-bounded access control using sliding-window query views for privacy-preserving data streams," IEEE Trans. Knowl. Data Eng., vol. 27, no. 7, pp. 1992-2004, Jul. 2015.
    • (2015) IEEE Trans. Knowl. Data Eng. , vol.27 , Issue.7 , pp. 1992-2004
    • Pervaiz, Z.1    Ghafoor, A.2    Aref, W.G.3
  • 30
    • 84902283834 scopus 로고    scopus 로고
    • Detecting concept drift: An information entropy based method using an adaptive sliding window
    • L. Du, Q. Song, and X. Jia, "Detecting concept drift: An information entropy based method using an adaptive sliding window," Intell. Data Anal., vol. 18, no. 3, pp. 337-364, 2014.
    • (2014) Intell. Data Anal. , vol.18 , Issue.3 , pp. 337-364
    • Du, L.1    Song, Q.2    Jia, X.3
  • 31
    • 84905845471 scopus 로고    scopus 로고
    • Data stream mining with multiple sliding windows for continuous prediction
    • Tel Aviv, Israel
    • O. Mimran and A. Even, "Data stream mining with multiple sliding windows for continuous prediction," in Proc. 22nd Eur. Conf. Inf. Syst. (ECIS), Tel Aviv, Israel, 2014, pp. 1-15.
    • (2014) Proc. 22nd Eur. Conf. Inf. Syst. (ECIS) , pp. 1-15
    • Mimran, O.1    Even, A.2
  • 32
  • 33
    • 0742323983 scopus 로고    scopus 로고
    • A general framework for mining massive data streams
    • P. M. Domingos and G. Hulten, "A general framework for mining massive data streams," J. Comput. Graph. Stat., vol. 12, no. 4, pp. 945-949, 2003.
    • (2003) J. Comput. Graph. Stat. , vol.12 , Issue.4 , pp. 945-949
    • Domingos, P.M.1    Hulten, G.2
  • 34
    • 80053905542 scopus 로고    scopus 로고
    • A hybrid decision tree training method using data streams
    • M. Wózniak, "A hybrid decision tree training method using data streams," Knowl. Inf. Syst., vol. 29, no. 2, pp. 335-347, 2011.
    • (2011) Knowl. Inf. Syst. , vol.29 , Issue.2 , pp. 335-347
    • Wózniak, M.1
  • 35
    • 83855162220 scopus 로고    scopus 로고
    • Incremental learning from stream data
    • Dec
    • H. He, S. Chen, K. Li, and X. Xu, "Incremental learning from stream data," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901-1914, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 1901-1914
    • He, H.1    Chen, S.2    Li, K.3    Xu, X.4
  • 37
    • 84921068363 scopus 로고    scopus 로고
    • Very fast decision rules for classification in data streams
    • P. Kosina and J. Gama, "Very fast decision rules for classification in data streams," Data Min. Knowl. Disc., vol. 29, no. 1, pp. 168-202, 2015.
    • (2015) Data Min. Knowl. Disc. , vol.29 , Issue.1 , pp. 168-202
    • Kosina, P.1    Gama, J.2
  • 39
    • 84881218423 scopus 로고    scopus 로고
    • Mining neighbor-based patterns in data streams
    • D. Yang, E. A. Rundensteiner, and M. O. Ward, "Mining neighbor-based patterns in data streams," Inf. Syst., vol. 38, no. 3, pp. 331-350, 2013.
    • (2013) Inf. Syst. , vol.38 , Issue.3 , pp. 331-350
    • Yang, D.1    Rundensteiner, E.A.2    Ward, M.O.3
  • 40
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Jan
    • T. M. Cover and P. E. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 42
    • 33745200865 scopus 로고    scopus 로고
    • An investigation of practical approximate nearest neighbor algorithms
    • Vancouver, BC, Canada
    • T. Liu, A. W. Moore, A. G. Gray, and K. Yang, "An investigation of practical approximate nearest neighbor algorithms," in Proc. Adv. Neural Inf. Process. Syst. (NIPS), Vancouver, BC, Canada, 2004, pp. 825-832.
    • (2004) Proc. Adv. Neural Inf. Process. Syst. (NIPS) , pp. 825-832
    • Liu, T.1    Moore, A.W.2    Gray, A.G.3    Yang, K.4
  • 43
    • 34547151535 scopus 로고    scopus 로고
    • Clustering billions of images with large scale nearest neighbor search
    • Austin, TX, USA
    • T. Liu, C. Rosenberg, and H. A. Rowley, "Clustering billions of images with large scale nearest neighbor search," in Proc. IEEE Workshop Appl. Comput. Vis. (WACV), Austin, TX, USA, 2007, p. 28.
    • (2007) Proc. IEEE Workshop Appl. Comput. Vis. (WACV) , pp. 28
    • Liu, T.1    Rosenberg, C.2    Rowley, H.A.3
  • 44
    • 84952777467 scopus 로고    scopus 로고
    • Tornado: A distributed spatio-textual stream processing system
    • A. R. Mahmood et al., "Tornado: A distributed spatio-textual stream processing system," in Proc. 41st Int. Conf. Very Large Data Bases, vol. 8. pp. 2020-2023, 2015.
    • (2015) Proc. 41st Int. Conf. Very Large Data Bases , vol.8 , pp. 2020-2023
    • Mahmood, A.R.1
  • 45
    • 85006494465 scopus 로고    scopus 로고
    • KNN-IS: An iterative spark-based design of the k-nearest neighbors classifier for big data
    • Feb.
    • J. Maillo, S. Ramírez, I. Triguero, and F. Herrera, "kNN-IS: An iterative spark-based design of the k-nearest neighbors classifier for big data," Knowl. Based Syst., vol. 117, pp. 3-15, Feb. 2017.
    • Knowl. Based Syst. , vol.117 , Issue.2017 , pp. 3-15
    • Maillo, J.1    Ramírez, S.2    Triguero, I.3    Herrera, F.4
  • 46
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • J. S. Sánchez, F. Pla, and F. J. Ferri, "Prototype selection for the nearest neighbour rule through proximity graphs," Pattern Recognit. Lett., vol. 18, no. 6, pp. 507-513, 1997.
    • (1997) Pattern Recognit. Lett. , vol.18 , Issue.6 , pp. 507-513
    • Sánchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 47
    • 0020783496 scopus 로고
    • The relative neighborhood graph, with an application to minimum spanning trees
    • K. J. Supowit, "The relative neighborhood graph, with an application to minimum spanning trees," J. ACM, vol. 30, no. 3, pp. 428-448, 1983.
    • (1983) J. ACM , vol.30 , Issue.3 , pp. 428-448
    • Supowit, K.J.1
  • 48
    • 84976243075 scopus 로고    scopus 로고
    • Study on density peaks clustering based on k-nearest neighbors and principal component analysis
    • May
    • M. Du, S. Ding, and H. Jia, "Study on density peaks clustering based on k-nearest neighbors and principal component analysis," Knowl. Based Syst., vol. 99, pp. 135-145, May 2016.
    • (2016) Knowl. Based Syst. , vol.99 , pp. 135-145
    • Du, M.1    Ding, S.2    Jia, H.3
  • 49
    • 84941426847 scopus 로고    scopus 로고
    • Self-tuning p-spectral clustering based on shared nearest neighbors
    • H. Jia, S. Ding, and M. Du, "Self-tuning p-spectral clustering based on shared nearest neighbors," Cogn. Comput., vol. 7, no. 5, pp. 622-632, 2015.
    • (2015) Cogn. Comput. , vol.7 , Issue.5 , pp. 622-632
    • Jia, H.1    Ding, S.2    Du, M.3
  • 52
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: Open challenges and future directions
    • B. Krawczyk, "Learning from imbalanced data: Open challenges and future directions," Progr. Artif. Intell., vol. 5, no. 4, pp. 221-232, 2016.
    • (2016) Progr. Artif. Intell. , vol.5 , Issue.4 , pp. 221-232
    • Krawczyk, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.