메뉴 건너뛰기




Volumn 44, Issue 3, 2014, Pages 353-362

Detecting and Reacting to Changes in Sensing Units: The Active Classifier Case

Author keywords

Active classifiers; change detection tests (CDTs); intelligent sensing; k nearest neighbor; support vector machine (SVM) classifiers

Indexed keywords

DATA STREAMS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH;

EID: 84969677534     PISSN: 21682216     EISSN: 21682232     Source Type: Journal    
DOI: 10.1109/TSMC.2013.2252895     Document Type: Article
Times cited : (28)

References (37)
  • 1
    • 84997995373 scopus 로고    scopus 로고
    • Piaget's legacy
    • Jul.
    • H. Flavell, "Piaget's legacy," Psychol. Sci., vol. 7, no. 4, pp. 200-203, Jul. 1996.
    • (1996) Psychol. Sci. , vol.7 , Issue.4 , pp. 200-203
    • Flavell, H.1
  • 2
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • Oct.
    • R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517-1531, Oct. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 3
    • 33747407368 scopus 로고    scopus 로고
    • Application of neural networks in optical inspection and classification of solder joints in surface mount technology
    • Aug.
    • G. Acciani, G. Brunetti, and G. Fornarelli, "Application of neural networks in optical inspection and classification of solder joints in surface mount technology," IEEE Trans. Ind. Inform., vol. 2, no. 3, pp. 200-209, Aug. 2006.
    • (2006) IEEE Trans. Ind. Inform , vol.2 , Issue.3 , pp. 200-209
    • Acciani, G.1    Brunetti, G.2    Fornarelli, G.3
  • 4
    • 0036576287 scopus 로고    scopus 로고
    • An innovative intelligent system for sensor validation in tokamak machines
    • May
    • A. Rizzo and M. G. Xibilia, "An innovative intelligent system for sensor validation in tokamak machines," IEEE Trans. Contr. Syst. Technol., vol. 10, no. 3, pp. 421-431, May 2002.
    • (2002) IEEE Trans. Contr. Syst. Technol. , vol.10 , Issue.3 , pp. 421-431
    • Rizzo, A.1    Xibilia, M.G.2
  • 5
    • 26844494151 scopus 로고    scopus 로고
    • Probabilistic approaches to fault detection in networked discrete event systems
    • Sep.
    • E. Athanasopoulou and C. N. Hadjicostis, "Probabilistic approaches to fault detection in networked discrete event systems," IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1042-1052, Sep. 2005
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.5 , pp. 1042-1052
    • Athanasopoulou, E.1    Hadjicostis, C.N.2
  • 10
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, "Individual comparisons by ranking methods," Biometr., vol. 1, no. 6, pp. 80-83, 1945.
    • (1945) Biometr. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 12
    • 0034027739 scopus 로고    scopus 로고
    • A cumulative sum type of method for environmental monitoring
    • Mar.
    • B. F. J. Manly and D. I. MacKenzie, "A cumulative sum type of method for environmental monitoring," Environmetr., vol. 11, no. 2, pp. 151-166, Mar. 2000.
    • (2000) Environmetr. , vol.11 , Issue.2 , pp. 151-166
    • Manly, B.F.J.1    MacKenzie, D.I.2
  • 15
    • 56449087483 scopus 로고    scopus 로고
    • Energy conservation in wireless sensor networks: A survey
    • May
    • G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, "Energy conservation in wireless sensor networks: A survey," Ad Hoc Netw., vol. 7, no. 3, pp. 537-568, May 2009.
    • (2009) Ad Hoc Netw. , vol.7 , Issue.3 , pp. 537-568
    • Anastasi, G.1    Conti, M.2    Francesco, M.D.3    Passarella, A.4
  • 16
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Feb.
    • L. Rokach, "Ensemble-based classifiers," ACM J. Artif. Intell. Rev., vol. 33, no. 1-2, pp. 1-39, Feb. 2010.
    • (2010) ACM J. Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 17
    • 57749121230 scopus 로고    scopus 로고
    • Just-in-time adaptive classifiers-part II: Designing the classifier
    • Dec.
    • C. Alippi, G. Boracchi, and M. Roveri, "Just-in-time adaptive classifiers-part II: Designing the classifier," IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2053-2064, Dec. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.12 , pp. 2053-2064
    • Alippi, C.1    Boracchi, G.2    Roveri, M.3
  • 18
    • 80054760676 scopus 로고    scopus 로고
    • An effective just-in-time adaptive classifier for gradual concept drifts
    • San Jose, CA, USA, Jul.-Aug.
    • C. Alippi, G. Boracchi, and M. Roveri, "An effective just-in-time adaptive classifier for gradual concept drifts," in Proc. Int. Joint Conf. Neural Netw., San Jose, CA, USA, Jul.-Aug. 2011, pp. 1675-1682.
    • (2011) Proc. Int. Joint Conf. Neural Netw. , pp. 1675-1682
    • Alippi, C.1    Boracchi, G.2    Roveri, M.3
  • 19
    • 84869066873 scopus 로고    scopus 로고
    • SVM-based just-in-time adaptive classifiers
    • LNCS
    • C. Alippi, L. Bu, and D. B. Zhao, "SVM-based just-in-time adaptive classifiers," in Proc. ICONIP, LNCS 7664, 2012, pp. 664-672.
    • (2012) Proc. ICONIP , vol.7664 , pp. 664-672
    • Alippi, C.1    Bu, L.2    Zhao, D.B.3
  • 20
    • 48949116228 scopus 로고    scopus 로고
    • Just-in-time adaptive classifiers-part I: Detecting nonstationary changes
    • Jul.
    • C. Alippi and M. Roveri, "Just-in-time adaptive classifiers-part I: Detecting nonstationary changes," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1145-1153, Jul. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.7 , pp. 1145-1153
    • Alippi, C.1    Roveri, M.2
  • 21
    • 0000527969 scopus 로고    scopus 로고
    • On spatial adaptive estimation of nonparametric regression
    • A. Goldenshluger, A. Nemirovski, "On spatial adaptive estimation of nonparametric regression," Math. Methods Statist., vol. 6, pp. 135-170, 1997
    • (1997) Math. Methods Statist. , vol.6 , pp. 135-170
    • Goldenshluger, A.1    Nemirovski, A.2
  • 22
    • 0032644614 scopus 로고    scopus 로고
    • A new method for varying adaptive bandwidth selection
    • Sep.
    • V. Katkovnik, "A new method for varying adaptive bandwidth selection," IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2567-2571, Sep. 1999.
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.9 , pp. 2567-2571
    • Katkovnik, V.1
  • 23
    • 80051790497 scopus 로고    scopus 로고
    • A just-in-time adaptive classification system based on the intersection of confidence intervals rule
    • C. Alippi, G. Boracchi, and M. Roveri "A just-in-time adaptive classification system based on the intersection of confidence intervals rule," Neural Netw., vol. 24, no. 8, pp. 791-800, 2011.
    • (2011) Neural Netw. , vol.24 , Issue.8 , pp. 791-800
    • Alippi, C.1    Boracchi, G.2    Roveri, M.3
  • 26
    • 84869069027 scopus 로고    scopus 로고
    • The improved grid-search algorithm used in the fault diagnosis by SV
    • H. Shen, H. Xi, and G. Xie, "The improved grid-search algorithm used in the fault diagnosis by SV," Mech. Eng. Autom., pp. 108-110, 2012
    • (2012) Mech. Eng. Autom. , pp. 108-110
    • Shen, H.1    Xi, H.2    Xie, G.3
  • 27
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • May
    • G. W. Gates, "The reduced nearest neighbor rule," IEEE Trans. Inform. Theor., vol. IT-18, no. 3, pp. 431-433, May 1972.
    • (1972) IEEE Trans. Inform. Theor. , vol.IT-18 , Issue.3 , pp. 431-433
    • Gates, G.W.1
  • 28
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • A. Bordes, S. Ertekin, J. Waston, and L. Bottou, "Fast kernel classifiers with online and active learning," J. Mach. Learn. Res., vol. 6, no. 1, pp. 1579-1619, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , Issue.1 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Waston, J.3    Bottou, L.4
  • 29
    • 0000913324 scopus 로고    scopus 로고
    • SVM torch: Support vector machines for large-scale regression problems
    • R. Collobert and S. Bengio, "SVM torch: Support vector machines for large-scale regression problems," J. Mach. Learn. Res., vol. 1, pp. 143-160, 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 30
    • 56449110590 scopus 로고    scopus 로고
    • SVM optimization: Inverse dependence on training set size
    • Helsinki, Finalnd, Jul.
    • S. Shalev-Shwartz and N. Srebro, "SVM optimization: Inverse dependence on training set size," in Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finalnd, Jul. 2008, pp. 928-935.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 928-935
    • Shalev-Shwartz, S.1    Srebro, N.2
  • 32
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomput., vol. 70, no. 1, pp. 489-501, 2006.
    • (2006) Neurocomput. , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 33
    • 84887001503 scopus 로고    scopus 로고
    • An overview of reservoir computing: Theory, applications and implementations
    • Bruges, Belgium, Apr.
    • B. Schrauwen, D. Verstraeten, and J. V. Campenhout, "An overview of reservoir computing: Theory, applications and implementations," in Proc. 15th Eur. Symp. Artif. Neural Netw. Bruges, Belgium, Apr. 2007, pp. 471-482.
    • (2007) Proc. 15th Eur. Symp. Artif. Neural Netw. , pp. 471-482
    • Schrauwen, B.1    Verstraeten, D.2    Campenhout, J.V.3
  • 34
    • 81555201641 scopus 로고    scopus 로고
    • Nonparametric monitoring of data streams for changes in location and scale
    • G. J. Ross, D. K. Tasoulis, and N. M. Adams, "Nonparametric monitoring of data streams for changes in location and scale," Technometr., vol. 53, no. 4, pp. 379-389, 2012
    • (2012) Technometr. , vol.53 , Issue.4 , pp. 379-389
    • Ross, G.J.1    Tasoulis, D.K.2    Adams, N.M.3
  • 36
    • 76149122832 scopus 로고    scopus 로고
    • An adaptive sampling algorithm for effective energy management in wireless sensor networks with energy-hungry sensors
    • Feb.
    • C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, "An adaptive sampling algorithm for effective energy management in wireless sensor networks with energy-hungry sensors," IEEE Trans. Instrum. Meas., vol. 59, no. 2, pp. 335-344, Feb. 2010.
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.2 , pp. 335-344
    • Alippi, C.1    Anastasi, G.2    Di-Francesco, M.3    Roveri, M.4
  • 37


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.