메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 77-89

Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features

Author keywords

Classification; Feature level fusion (FLF); Hyperspectral imagery; Random forest (RF); Stacked sparse autoencoder (SSA)

Indexed keywords

DECISION TREES; FRACTALS; HIGHER ORDER STATISTICS; LEARNING SYSTEMS; SPECTROSCOPY; SPECTRUM ANALYSIS;

EID: 85028702520     PISSN: 13504495     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.infrared.2017.08.021     Document Type: Article
Times cited : (37)

References (40)
  • 1
    • 84920676147 scopus 로고    scopus 로고
    • Adaptive classification of hyperspectral images using local consistency
    • 063014–063014
    • Bian, X., Zhang, X., Liu, R., Ma, L., Fu, X., Adaptive classification of hyperspectral images using local consistency. J. Electron. Imaging, 23, 2014, 10.1117/1.JEI.23.6.063014 063014–063014.
    • (2014) J. Electron. Imaging , vol.23
    • Bian, X.1    Zhang, X.2    Liu, R.3    Ma, L.4    Fu, X.5
  • 2
    • 82155181590 scopus 로고    scopus 로고
    • Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification
    • Shen, L., Jia, S., Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geosci. Rem. Sens. 49 (2011), 5039–5046, 10.1109/TGRS.2011.2157166.
    • (2011) IEEE Trans. Geosci. Rem. Sens. , vol.49 , pp. 5039-5046
    • Shen, L.1    Jia, S.2
  • 3
    • 84896391507 scopus 로고    scopus 로고
    • Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization
    • Wang, Z., Nasrabadi, N.M., Huang, T.S., Spatial-spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization. IEEE Trans. Geosci. Rem. Sens. 52 (2014), 4808–4822, 10.1109/TGRS. 2013. 2285049.
    • (2014) IEEE Trans. Geosci. Rem. Sens. , vol.52 , pp. 4808-4822
    • Wang, Z.1    Nasrabadi, N.M.2    Huang, T.S.3
  • 4
    • 33745144951 scopus 로고    scopus 로고
    • An optimized approach to application of neural networks to classification of multispectral, remote sensing data
    • IEEE International Conference on Networking, Sensing and Control, 2005, pp. 235–240. 10.1109/ICNSC.2005.1461193.
    • M. Toshniwal, An optimized approach to application of neural networks to classification of multispectral, remote sensing data, in: IEEE International Conference on Networking, Sensing and Control, 2005, pp. 235–240. 10.1109/ICNSC.2005.1461193.
    • Toshniwal, M.1
  • 5
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham, J., Chen, Y., Crawford, M.M., Ghosh, J., Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 43 (2005), 492–501, 10.1109/TGRS.2004.842481.
    • (2005) IEEE Trans. Geosci. Rem. Sens. , vol.43 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 6
    • 0034818997 scopus 로고    scopus 로고
    • A linear constrained distance-based discriminant analysis for hyperspectral image classification
    • Du, Q., Chang, C.I., A linear constrained distance-based discriminant analysis for hyperspectral image classification. Pattern Recogn. 34 (2001), 361–373.
    • (2001) Pattern Recogn. , vol.34 , pp. 361-373
    • Du, Q.1    Chang, C.I.2
  • 7
    • 0035172225 scopus 로고    scopus 로고
    • Support vector machines for broad-area feature classification in remotely sensed images
    • Perkins, S.J., Harvey, N.R., Brumby, S.P., Support vector machines for broad-area feature classification in remotely sensed images. Int. Soc. Opt. Eng. 4381 (2001), 286–295.
    • (2001) Int. Soc. Opt. Eng. , vol.4381 , pp. 286-295
    • Perkins, S.J.1    Harvey, N.R.2    Brumby, S.P.3
  • 8
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal, M., Mather, P.M., Assessment of the effectiveness of support vector machines for hyperspectral data. Fut. Gener. Comput. Syst. 20 (2004), 1215–1225, 10.1016/j.future.2003.11.011.
    • (2004) Fut. Gener. Comput. Syst. , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 9
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Rem. Sens. 46 (2007), 3804–3814, 10.1109/TGRS. 2008.922034.
    • (2007) IEEE Trans. Geosci. Rem. Sens. , vol.46 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 10
    • 84905675181 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification via SVM and superpixel segmentation
    • IEEE Instrumentation and Measurement Technology Conference, 2014, pp. 422–427. 10.1109/I2MTC.2014.6860780.
    • Z. He, Y. Shen, M. Zhang, Q. Wang, Spectral-spatial hyperspectral image classification via SVM and superpixel segmentation, in: IEEE Instrumentation and Measurement Technology Conference, 2014, pp. 422–427. 10.1109/I2MTC.2014.6860780.
    • He, Z.1    Shen, Y.2    Zhang, M.3    Wang, Q.4
  • 11
    • 84966737249 scopus 로고    scopus 로고
    • Hyperspectral image preprocessing with bilateral filter for improving the classification accuracy of support vector machines
    • Sahadevan, A.S., Routray, A., Das, B.S., Ahmad, S., Hyperspectral image preprocessing with bilateral filter for improving the classification accuracy of support vector machines. J. Appl. Rem. Sens. 10 (2016), 2–17, 10.1117/1.JRS.10.025004.
    • (2016) J. Appl. Rem. Sens. , vol.10 , pp. 2-17
    • Sahadevan, A.S.1    Routray, A.2    Das, B.S.3    Ahmad, S.4
  • 12
    • 84901488316 scopus 로고    scopus 로고
    • An adaptive bilateral filter based framework for image denoising
    • Zhang, Y., Tian, X., Ren, P., An adaptive bilateral filter based framework for image denoising. Neurocomputing 140 (2014), 299–316, 10.1016/j.neucom.2014.03.008.
    • (2014) Neurocomputing , vol.140 , pp. 299-316
    • Zhang, Y.1    Tian, X.2    Ren, P.3
  • 13
    • 84880164023 scopus 로고    scopus 로고
    • An efficient universal noise removal algorithm combining spatial gradient and impulse statistic
    • Chen, S., Shi, W., Zhang, W., An efficient universal noise removal algorithm combining spatial gradient and impulse statistic. Math. Prob. Eng. 2013 (2013), 14–26, 10.1155/2013/480274.
    • (2013) Math. Prob. Eng. , vol.2013 , pp. 14-26
    • Chen, S.1    Shi, W.2    Zhang, W.3
  • 14
    • 84894230854 scopus 로고    scopus 로고
    • Image denoising by supervised adaptive fusion of decomposed images restored using wave atom, curvelet and wavelet transform
    • Swami, P.D., Jain, A., Image denoising by supervised adaptive fusion of decomposed images restored using wave atom, curvelet and wavelet transform. SIViP 8 (2014), 443–459, 10.1007/s11760-012-0343-z.
    • (2014) SIViP , vol.8 , pp. 443-459
    • Swami, P.D.1    Jain, A.2
  • 15
    • 84901044460 scopus 로고    scopus 로고
    • Speckle reduction in optical coherence tomography images based on wave atoms
    • Du, Y., Liu, G., Feng, G., Chen, Z., Speckle reduction in optical coherence tomography images based on wave atoms. J. Biomed. Opt. 19 (2014), 1–7, 10.1117/1. JBO.19.5.056009.
    • (2014) J. Biomed. Opt. , vol.19 , pp. 1-7
    • Du, Y.1    Liu, G.2    Feng, G.3    Chen, Z.4
  • 16
    • 84873134900 scopus 로고    scopus 로고
    • Unsupervised methods for the classification of hyperspectral images with low spatial resolution
    • Villa, A., Chanussot, J., Benediktsson, J.A., Jutten, C., Dambreville, R., Unsupervised methods for the classification of hyperspectral images with low spatial resolution. Pattern Recogn. 46 (2013), 1556–15687, 10.1016/j.patcog. 2012.10.030.
    • (2013) Pattern Recogn. , vol.46 , pp. 1556-15687
    • Villa, A.1    Chanussot, J.2    Benediktsson, J.A.3    Jutten, C.4    Dambreville, R.5
  • 17
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Iordache, M.D., Bioucas-Dias, J.M., Plaza, A., Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Rem. Sens. 50 (2012), 4484–4502, 10.1109/TGRS.2012.2191590.
    • (2012) IEEE Trans. Geosci. Rem. Sens. , vol.50 , pp. 4484-4502
    • Iordache, M.D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 18
    • 21844447139 scopus 로고    scopus 로고
    • Application of higher order statistics techniques to EMG signals to characterize the motor unit action potential
    • Shahid, S., Walker, J., Lyons, G.M., Byrne, C.A., Nene, A.V., Application of higher order statistics techniques to EMG signals to characterize the motor unit action potential. IEEE Trans. Biomed. Eng. 52 (2005), 1195–1209, 10.1109/TBME. 2005. 847525.
    • (2005) IEEE Trans. Biomed. Eng. , vol.52 , pp. 1195-1209
    • Shahid, S.1    Walker, J.2    Lyons, G.M.3    Byrne, C.A.4    Nene, A.V.5
  • 19
    • 77955273405 scopus 로고    scopus 로고
    • Application of higher order statistics/spectra in biomedical signals-a review
    • Chua, K.C., Chandran, V., Acharya, U.R., Lim, C.M., Application of higher order statistics/spectra in biomedical signals-a review. Med. Eng. Phys. 32 (2010), 679–689, 10.1016/j.medengphy. 2010.04.009.
    • (2010) Med. Eng. Phys. , vol.32 , pp. 679-689
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 20
    • 84955590155 scopus 로고    scopus 로고
    • Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
    • Shrivastava, V.K., Londhe, N.D., Sonawane, R.S., Suri, J.S., Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind. Comput. Methods Prog. Biomed. 126 (2016), 98–109, 10.1016/j.cmpb.2015.11.013.
    • (2016) Comput. Methods Prog. Biomed. , vol.126 , pp. 98-109
    • Shrivastava, V.K.1    Londhe, N.D.2    Sonawane, R.S.3    Suri, J.S.4
  • 21
    • 54949157749 scopus 로고    scopus 로고
    • Application of higher order spectra for the identification of diabetes retinopathy stages
    • Acharya, U.R., Chua, C.K., Ng, E.Y., Yu, W., Chee, C., Application of higher order spectra for the identification of diabetes retinopathy stages. J. Med. Syst. 32 (2008), 481–488, 10.1007/s10916-008-9154-8.
    • (2008) J. Med. Syst. , vol.32 , pp. 481-488
    • Acharya, U.R.1    Chua, C.K.2    Ng, E.Y.3    Yu, W.4    Chee, C.5
  • 22
    • 0004116888 scopus 로고    scopus 로고
    • Techniques in Fractal Geometry
    • John Wiley and Sons Ltd. New York
    • Falconer, K., Techniques in Fractal Geometry. 1997, John Wiley and Sons Ltd., New York.
    • (1997)
    • Falconer, K.1
  • 23
    • 84863435849 scopus 로고    scopus 로고
    • The time-singularity multifractal spectrum distribution
    • Xiong, G., Zhang, S., Liu, Q., The time-singularity multifractal spectrum distribution. Phys. A Stat. Mech. Appl. 391 (2012), 4727–4739, 10.1016/j.physa.2012.05. 026.
    • (2012) Phys. A Stat. Mech. Appl. , vol.391 , pp. 4727-4739
    • Xiong, G.1    Zhang, S.2    Liu, Q.3
  • 24
    • 73549086330 scopus 로고    scopus 로고
    • Multifractal spectrum analysis on microscope image of eutectic carbides by a quadratic function fitting
    • International Joint Conference on Inc, IEEE Computer Society, 2009, pp. 1623–1627. 10.1109/NCM.2009.291.
    • G. Wang, J. Ning, Q. Zhang, W. Liu, L. Tang, Multifractal spectrum analysis on microscope image of eutectic carbides by a quadratic function fitting, in: International Joint Conference on Inc, IEEE Computer Society, 2009, pp. 1623–1627. 10.1109/NCM.2009.291.
    • Wang, G.1    Ning, J.2    Zhang, Q.3    Liu, W.4    Tang, L.5
  • 25
    • 84921325009 scopus 로고    scopus 로고
    • A novel logistic multi-class supervised classification model based on multi-fractal spectrum parameters for hyperspectral data
    • Li, N., Zhao, H., Huang, P., Jia, G., Bai, X., A novel logistic multi-class supervised classification model based on multi-fractal spectrum parameters for hyperspectral data. Int. J. Comput. Math. 92 (2014), 1–14, 10.1080/00207160.2014.915957.
    • (2014) Int. J. Comput. Math. , vol.92 , pp. 1-14
    • Li, N.1    Zhao, H.2    Huang, P.3    Jia, G.4    Bai, X.5
  • 26
    • 80053595922 scopus 로고    scopus 로고
    • Applying multifractal spectrum combined with fractal discrete brownian motion model to wood defects recognition for sawing
    • Yu, L., Qi, D., Applying multifractal spectrum combined with fractal discrete brownian motion model to wood defects recognition for sawing. Wood Sci. Technol. 45 (2011), 511–519, 10.1007/s00226-010-0341-7.
    • (2011) Wood Sci. Technol. , vol.45 , pp. 511-519
    • Yu, L.1    Qi, D.2
  • 27
    • 33745805403 scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., The, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18 (1960), 1527–1554.
    • (1960) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    The, Y.W.3
  • 28
    • 84928013181 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • Lenz, I., Lee, H., Saxena, A., Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34 (2013), 705–724, 10.1177/0278364914549607.
    • (2013) Int. J. Robot. Res. , vol.34 , pp. 705-724
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 29
    • 84963878431 scopus 로고    scopus 로고
    • Deformable MR prostate segmentation via deep feature learning and sparse patch matching
    • Guo, Y., Gao, Y., Shen, D., Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE Trans. Med. Imaging 35 (2015), 1077–1089, 10.1109/TMI.2015. 2508280.
    • (2015) IEEE Trans. Med. Imaging , vol.35 , pp. 1077-1089
    • Guo, Y.1    Gao, Y.2    Shen, D.3
  • 31
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Romero, A., Gatta, C., Camps-Valls, G., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Rem. Sens. 54 (2015), 1–14, 10.1109/TGRS. 2015.2478379.
    • (2015) IEEE Trans. Geosci. Rem. Sens. , vol.54 , pp. 1-14
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 32
    • 35148877210 scopus 로고    scopus 로고
    • Wave atoms and sparsity of oscillatory patterns
    • Demanet, L., Ying, L., Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal. 23 (2007), 368–387, 10.1016/j.acha.2007.03.003.
    • (2007) Appl. Comput. Harmon. Anal. , vol.23 , pp. 368-387
    • Demanet, L.1    Ying, L.2
  • 34
    • 0027235180 scopus 로고
    • Pattern recognition using invariants defined from higher order spectra-one dimensional inputs
    • Chandran, V., Elgar, S.L., Pattern recognition using invariants defined from higher order spectra-one dimensional inputs. IEEE Trans. Sign. Process. 41 (1993), 205–212.
    • (1993) IEEE Trans. Sign. Process. , vol.41 , pp. 205-212
    • Chandran, V.1    Elgar, S.L.2
  • 35
    • 4344600402 scopus 로고    scopus 로고
    • Blind detection of photomontage using higher order statistics
    • IEEE International Symposium on Circuits and Systems, vol. 5, 2004, pp. 688–691. 10.1109/ISCAS.2004.1329901.
    • T.T. Ng, S.F. Chang, Q. Sun, Blind detection of photomontage using higher order statistics, in: IEEE International Symposium on Circuits and Systems, vol. 5, 2004, pp. 688–691. 10.1109/ISCAS.2004.1329901.
    • Ng, T.T.1    Chang, S.F.2    Sun, Q.3
  • 36
    • 0034012293 scopus 로고    scopus 로고
    • Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method
    • Zhang, J.W., Zheng, C.X., Xie, A., Bispectrum analysis of focal ischemic cerebral EEG signal using third-order recursion method. IEEE Trans. Biomed. Eng. 47 (2000), 352–359, 10.1109/10.827210.1109/10.82729696.
    • (2000) IEEE Trans. Biomed. Eng. , vol.47 , pp. 352-359
    • Zhang, J.W.1    Zheng, C.X.2    Xie, A.3
  • 37
    • 39749182703 scopus 로고    scopus 로고
    • Cardiac state diagnosis using higher order spectra of heart rate variability
    • Chua, K.C., Chandran, V., Acharya, U.R., Lim, C.M., Cardiac state diagnosis using higher order spectra of heart rate variability. J. Med. Eng. Technol. 32 (2009), 145–155, 10.1080/03091900601050862.
    • (2009) J. Med. Eng. Technol. , vol.32 , pp. 145-155
    • Chua, K.C.1    Chandran, V.2    Acharya, U.R.3    Lim, C.M.4
  • 38
    • 38349077304 scopus 로고    scopus 로고
    • Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface
    • Zhou, S.M., Gan, J.Q., Sepulveda, F., Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178 (2008), 1629–1640, 10.1016/j.ins.2007.11.012.
    • (2008) Inf. Sci. , vol.178 , pp. 1629-1640
    • Zhou, S.M.1    Gan, J.Q.2    Sepulveda, F.3
  • 39
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images
    • Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35 (2015), 119–130, 10.1109/TMI. 2015. 2458702.
    • (2015) IEEE Trans. Med. Imaging , vol.35 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5    Tang, J.6    Madabhushi, A.7
  • 40
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
    • Tao, C., Pan, H., Li, Y., Zou, Z., Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci. Rem. Sens. Lett. 12 (2015), 2438–2442, 10.1109/LGRS.2015.2482520.
    • (2015) IEEE Geosci. Rem. Sens. Lett. , vol.12 , pp. 2438-2442
    • Tao, C.1    Pan, H.2    Li, Y.3    Zou, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.