-
1
-
-
84930630277
-
Deep Learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521, 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
3
-
-
84923367417
-
Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships
-
Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
4
-
-
84927735077
-
-
arXiv:1502.02072
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery. arXiv:1502.02072 2015.
-
(2015)
Massively Multitask Networks for Drug Discovery
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
5
-
-
84981496808
-
Deep Learning as an Opportunity in Virtual Screening
-
Unterthiner, T.; Mayr, A.; Ünter Klambauer, G.; Steijaert, M.; Wenger, J.; Ceulemans, H.; Hochreiter, S. Deep Learning as an Opportunity in Virtual Screening. Deep Learning and Representation Learning Workshop (NIPS 2014); 2014.
-
(2014)
Deep Learning and Representation Learning Workshop (NIPS 2014)
-
-
Unterthiner, T.1
Mayr, A.2
Ünter Klambauer, G.3
Steijaert, M.4
Wenger, J.5
Ceulemans, H.6
Hochreiter, S.7
-
9
-
-
85075670920
-
TensorFlow: A System for Large-Scale Machine Learning
-
Savannah, GA
-
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur, M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D.; Steiner, B.; Tucker, P.; Vasudevan, V.; Warden, P.; Wicke, M.; Yu, Y.; Zheng, X. TensorFlow: A System for Large-Scale Machine Learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, 2016; pp 265-283.
-
(2016)
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI)
, pp. 265-283
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kudlur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Murray, D.15
Steiner, B.16
Tucker, P.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zheng, X.22
more..
-
10
-
-
84937942087
-
-
arXiv:1211.5590
-
Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfellow, I.; Bergeron, A.; Bouchard, N.; Warde-Farley, D.; Bengio, Y. Theano: New Features and Speed Improvements. arXiv:1211.5590 2012.
-
(2012)
Theano: New Features and Speed Improvements
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
12
-
-
0023965741
-
SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules
-
Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules J. Chem. Inf. Model. 1988, 28, 31-36 10.1021/ci00057a005
-
(1988)
J. Chem. Inf. Model.
, vol.28
, pp. 31-36
-
-
Weininger, D.1
-
13
-
-
0029894013
-
The Properties of Known Drugs. 1. Molecular Frameworks
-
Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs. 1. Molecular Frameworks J. Med. Chem. 1996, 39, 2887-2893 10.1021/jm9602928
-
(1996)
J. Med. Chem.
, vol.39
, pp. 2887-2893
-
-
Bemis, G.W.1
Murcko, M.A.2
-
15
-
-
84992694543
-
Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using Ligand Based Approaches
-
Subramanian, G.; Ramsundar, B.; Pande, V.; Denny, R. A. Computational Modeling of β-secretase 1 (BACE-1) Inhibitors using Ligand Based Approaches J. Chem. Inf. Model. 2016, 56, 1936-1949 10.1021/acs.jcim.6b00290
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1936-1949
-
-
Subramanian, G.1
Ramsundar, B.2
Pande, V.3
Denny, R.A.4
-
16
-
-
85026486382
-
Low Data Drug Discovery with One-Shot Learning
-
Altae-Tran, H.; Ramsundar, B.; Pappu, A., S.; Pande, V. Low Data Drug Discovery with One-Shot Learning ACS Cent. Sci. 2017, 3, 283-293 10.1021/acscentsci.6b00367
-
(2017)
ACS Cent. Sci.
, vol.3
, pp. 283-293
-
-
Altae-Tran, H.1
Ramsundar, B.2
Pappu, A.S.3
Pande, V.4
-
17
-
-
85016426881
-
-
arXiv:1606.04671
-
Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. Progressive Neural Networks. arXiv:1606.04671 2016.
-
(2016)
Progressive Neural Networks
-
-
Rusu, A.A.1
Rabinowitz, N.C.2
Desjardins, G.3
Soyer, H.4
Kirkpatrick, J.5
Kavukcuoglu, K.6
Pascanu, R.7
Hadsell, R.8
-
18
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, é. Scikit-learn: Machine learning in Python Journal of Machine Learning Research (JMLR) 2011, 12, 2825-2830
-
(2011)
Journal of Machine Learning Research (JMLR)
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
19
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a Simple Way to Prevent Neural Networks from Overfitting Journal of Machine Learning Research (JMLR) 2014, 15, 1929-1958
-
(2014)
Journal of Machine Learning Research (JMLR)
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
21
-
-
33845379303
-
Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications
-
Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications J. Chem. Inf. Model. 1985, 25, 64-73 10.1021/ci00046a002
-
(1985)
J. Chem. Inf. Model.
, vol.25
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Venkataraghavan, R.3
-
22
-
-
0001577643
-
Chemical Similarity using Physiochemical Property Descriptors
-
Kearsley, S. K.; Sallamack, S.; Fluder, E. M.; Andose, J. D.; Mosley, R. T.; Sheridan, R. P. Chemical Similarity using Physiochemical Property Descriptors J. Chem. Inf. Model. 1996, 36, 118-127 10.1021/ci950274j
-
(1996)
J. Chem. Inf. Model.
, vol.36
, pp. 118-127
-
-
Kearsley, S.K.1
Sallamack, S.2
Fluder, E.M.3
Andose, J.D.4
Mosley, R.T.5
Sheridan, R.P.6
-
23
-
-
84876520796
-
Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction
-
Sheridan, R. P. Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction J. Chem. Inf. Model. 2013, 53, 783-790 10.1021/ci400084k
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 783-790
-
-
Sheridan, R.P.1
-
24
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests Machine learning 2001, 45, 5-32 10.1023/A:1010933404324
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
25
-
-
0345548657
-
Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling J. Chem. Inf. Model. 2003, 43, 1947-1958 10.1021/ci034160g
-
(2003)
J. Chem. Inf. Model.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
27
-
-
80755125565
-
Comprehensive Assay of Kinase Catalytic Activity Reveals Features of Kinase Inhibitor Selectivity
-
Anastassiadis, T.; Deacon, S. W.; Devarajan, K.; Ma, H.; Peterson, J. R. Comprehensive Assay of Kinase Catalytic Activity Reveals Features of Kinase Inhibitor Selectivity Nat. Biotechnol. 2011, 29, 1039-1045 10.1038/nbt.2017
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 1039-1045
-
-
Anastassiadis, T.1
Deacon, S.W.2
Devarajan, K.3
Ma, H.4
Peterson, J.R.5
-
28
-
-
84965159799
-
Convolutional Networks on Graphs for Learning molecular fingerprints
-
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning molecular fingerprints Neural Inf. Proc. Sys. (NIPS) 2015, 2224-2232
-
(2015)
Neural Inf. Proc. Sys. (NIPS)
, pp. 2224-2232
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
29
-
-
85020775480
-
-
arXiv:1703.00564
-
Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V. MoleculeNet: A Benchmark for Molecular Machine Learning. arXiv:1703.00564 2017.
-
(2017)
MoleculeNet: A Benchmark for Molecular Machine Learning
-
-
Wu, Z.1
Ramsundar, B.2
Feinberg, E.N.3
Gomes, J.4
Geniesse, C.5
Pappu, A.S.6
Leswing, K.7
Pande, V.8
|