메뉴 건너뛰기




Volumn 182, Issue , 2013, Pages 71-79

Chaotic time series prediction of E-nose sensor drift in embedded phase space

Author keywords

Sensor drift Chaotic time series Long term prediction Phase space reconstruction Radial basis function neural network

Indexed keywords

CHAOTIC TIME SERIES; CHAOTIC TIME SERIES PREDICTION; EMBEDDED PHASE SPACE; EXPERIMENTAL OBSERVATION; LONG-TERM OBSERVATIONS; METAL-OXIDE SEMICONDUCTOR SENSORS; PHASE SPACE RECONSTRUCTIONS (PSR); RADIAL BASIS FUNCTION NEURAL NETWORKS;

EID: 84875692341     PISSN: 09254005     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.snb.2013.03.003     Document Type: Article
Times cited : (59)

References (28)
  • 1
    • 13144251172 scopus 로고    scopus 로고
    • Chemical sensors for electronic nose systems
    • DOI 10.1007/s00604-004-0291-6
    • D. James, S.M. Scott, Z. Ali, and W.T.O. Hare Chemical sensors for electronic nose systems Microchimica Acta 149 2005 1 17 (Pubitemid 40179092)
    • (2005) Microchimica Acta , vol.149 , Issue.1-2 , pp. 1-17
    • James, D.1    Scott, S.M.2    Ali, Z.3    O'Hare, W.T.4
  • 2
    • 33845520883 scopus 로고    scopus 로고
    • Data analysis for electronic nose systems
    • S.M. Scott, D. James, and Z. Ali Data analysis for electronic nose systems Microchimica Acta 156 2007 183 207
    • (2007) Microchimica Acta , vol.156 , pp. 183-207
    • Scott, S.M.1    James, D.2    Ali, Z.3
  • 4
    • 77951105742 scopus 로고    scopus 로고
    • Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview
    • A.C. Romain, and J. Nicolas Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview Sensors and Actuators B 146 2010 502 506
    • (2010) Sensors and Actuators B , vol.146 , pp. 502-506
    • Romain, A.C.1    Nicolas, J.2
  • 7
    • 0242415882 scopus 로고    scopus 로고
    • Drift reduction of gas sensor by wavelet and principal component analysis
    • H. Ding, J. Liu, and Z. Shen Drift reduction of gas sensor by wavelet and principal component analysis Sensors and Actuators B 96 2003 354 363
    • (2003) Sensors and Actuators B , vol.96 , pp. 354-363
    • Ding, H.1    Liu, J.2    Shen, Z.3
  • 10
    • 78751667711 scopus 로고    scopus 로고
    • Online drift compensation for chemical sensors using estimation theory
    • M.J. Wenzel, A.M. Brown, F. Josse, and E.E. Yaz Online drift compensation for chemical sensors using estimation theory IEEE Sensors Journal 11 1 2011 225 232
    • (2011) IEEE Sensors Journal , vol.11 , Issue.1 , pp. 225-232
    • Wenzel, M.J.1    Brown, A.M.2    Josse, F.3    Yaz, E.E.4
  • 12
    • 9744257846 scopus 로고    scopus 로고
    • Prediction of chaotic time series based on the recurrent predictor neural network
    • M. Han, J. Xi, S. Xu, and F.L. Yin Prediction of chaotic time series based on the recurrent predictor neural network IEEE Transactions on Signal Processing 52 2004 3409 3416
    • (2004) IEEE Transactions on Signal Processing , vol.52 , pp. 3409-3416
    • Han, M.1    Xi, J.2    Xu, S.3    Yin, F.L.4
  • 13
    • 81155139685 scopus 로고    scopus 로고
    • Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose
    • L. Zhang, F. Tian, C. Kadri, G. Pei, H. Li, and L. Pan Gases concentration estimation using heuristics and bio-inspired optimization models for experimental chemical electronic nose Sensors and Actuators B Chemical 160 2011 760 770
    • (2011) Sensors and Actuators B Chemical , vol.160 , pp. 760-770
    • Zhang, L.1    Tian, F.2    Kadri, C.3    Pei, G.4    Li, H.5    Pan, L.6
  • 14
    • 84868140991 scopus 로고    scopus 로고
    • Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine
    • L. Zhang, F. Tian, H. Nie, L. Dang, G. Li, Q. Ye, and C. Kadri Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine Sensors and Actuators B Chemical 174 2012 114 125
    • (2012) Sensors and Actuators B Chemical , vol.174 , pp. 114-125
    • Zhang, L.1    Tian, F.2    Nie, H.3    Dang, L.4    Li, G.5    Ye, Q.6    Kadri, C.7
  • 15
  • 16
    • 85008043346 scopus 로고    scopus 로고
    • Reconstruction of drifting sensor responses based on papoulis-gerchberg method
    • D. Huang, and H. Leung Reconstruction of drifting sensor responses based on papoulis-gerchberg method IEEE Sensors Journal 9 2009 595 604
    • (2009) IEEE Sensors Journal , vol.9 , pp. 595-604
    • Huang, D.1    Leung, H.2
  • 17
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Springer Berlin
    • F. Taken Detecting strange attractors in turbulence Dynamical Systems and Turbulence 1980 Springer Berlin
    • (1980) Dynamical Systems and Turbulence
    • Taken, F.1
  • 19
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • M.T. Rosenstein, J.J. Collins, and C.J. De Luca A practical method for calculating largest Lyapunov exponents from small data sets Physica D: Nonlinear Phenomena 65 1993 117 134
    • (1993) Physica D: Nonlinear Phenomena , vol.65 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    De Luca, C.J.3
  • 20
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • PII S0167278997001188
    • L. Cao Practical method for determining the minimum embedding dimension of a scalar time series Physica D 110 1997 43 50 (Pubitemid 127701588)
    • (1997) Physica D: Nonlinear Phenomena , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.1
  • 21
    • 0037078145 scopus 로고
    • A method of embedding dimension estimation based on symplectic geometry
    • M. Lei, Z. Wang, and Z. Feng A method of embedding dimension estimation based on symplectic geometry Physics Letters A 303 1994 179 189
    • (1994) Physics Letters A , vol.303 , pp. 179-189
    • Lei, M.1    Wang, Z.2    Feng, Z.3
  • 22
    • 26544461279 scopus 로고
    • Reconstruction expansion as a geometry based framework for choosing proper delay times
    • M.T. Rosenstein, J.J. Collins, and J. De Luca Carlo Reconstruction expansion as a geometry based framework for choosing proper delay times Physica D 73 1994 82 98
    • (1994) Physica D , vol.73 , pp. 82-98
    • Rosenstein, M.T.1    Collins, J.J.2    De Luca Carlo, J.3
  • 23
    • 0000805615 scopus 로고
    • Optimal delay time and embedding dimension for delay time coordinates by analysis of the global and local dynamical behavior of strange attractors
    • T. Buzug, and G. Pfister Optimal delay time and embedding dimension for delay time coordinates by analysis of the global and local dynamical behavior of strange attractors Physical Review A 45 1992 7073 7084
    • (1992) Physical Review A , vol.45 , pp. 7073-7084
    • Buzug, T.1    Pfister, G.2
  • 26
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M. Casdagli Nonlinear prediction of chaotic time series Physica D 35 1989 335 356
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 27
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal Radial Basis Function (RBF) neural network learning algorithm
    • PII S1045922798018116
    • Y. Lu, N. Sundararajan, and P. Saratchandran Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm IEEE Transactions on Neural Networks 9 1998 308 318 (Pubitemid 128743638)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 28
    • 0032102851 scopus 로고    scopus 로고
    • Nonlinear dynamics of hourly ozone concentrations: Nonparametric short term prediction
    • C. Jiann Long, I. Shafiqul, and B. Pratim Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction Atmospheric Environment 32 1998 1839 1848
    • (1998) Atmospheric Environment , vol.32 , pp. 1839-1848
    • Jiann Long, C.1    Shafiqul, I.2    Pratim, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.