메뉴 건너뛰기




Volumn 26, Issue 2, 2015, Pages 400-408

Asymmetric mixture model with simultaneous feature selection and model detection

Author keywords

Asymmetric mixture model; feature selection; model detection; student's t distribution; variational Bayesian (VB) learning

Indexed keywords

BARIUM COMPOUNDS; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); MIXTURES; SPEECH ENHANCEMENT; STUDENTS;

EID: 85027944464     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2314239     Document Type: Article
Times cited : (24)

References (34)
  • 3
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modeling using the t distribution
    • D. Peel and G. McLachlan, "Robust mixture modeling using the t distribution," Stat. Comput., vol. 10, no. 1, pp. 339-348, 2000.
    • (2000) Stat. Comput. , vol.10 , Issue.1 , pp. 339-348
    • Peel, D.1    McLachlan, G.2
  • 4
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using em and its extensions, ECM and ECME
    • C. Liu and D. Rubin, "ML estimation of the t distribution using EM and its extensions, ECM and ECME," Stat. Sinica, vol. 5, no. 1, pp. 19-39, 1995.
    • (1995) Stat. Sinica , vol.5 , Issue.1 , pp. 19-39
    • Liu, C.1    Rubin, D.2
  • 5
    • 67651005607 scopus 로고    scopus 로고
    • Robust sequential data modeling using an outlier tolerant hidden Markov model
    • Sep.
    • S. P. Chatzis, D. I. Kosmopoulos, and T. A. Varvarigou, "Robust sequential data modeling using an outlier tolerant hidden Markov model," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1657-1669, Sep. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.9 , pp. 1657-1669
    • Chatzis, S.P.1    Kosmopoulos, D.I.2    Varvarigou, T.A.3
  • 6
    • 84855410923 scopus 로고    scopus 로고
    • Robust student's-t mixture model with spatial constraints and its application in medical image segmentation
    • Jan.
    • M. N. Thanh and Q. M. J. Wu, "Robust Student's-t mixture model with spatial constraints and its application in medical image segmentation," IEEE Trans. Med. Imag., vol. 31, no. 1, pp. 103-116, Jan. 2012.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.1 , pp. 103-116
    • Thanh, M.N.1    Wu, Q.M.J.2
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via em algorithm
    • P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via EM algorithm," J. Roy. Stat. Soc., vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • H. Attias, "A variational Bayesian framework for graphical models," Adv. Neural Inf. Process. Syst., vol. 12, no. 1, pp. 209-215, 2000.
    • (2000) Adv. Neural Inf. Process. Syst. , vol.12 , Issue.1 , pp. 209-215
    • Attias, H.1
  • 10
    • 15844362098 scopus 로고    scopus 로고
    • Robust bayesian mixture modelling
    • Mar.
    • M. Svensen and C. M. Bishop, "Robust Bayesian mixture modelling," Neurocomputing, vol. 64, pp. 235-252, Mar. 2005.
    • (2005) Neurocomputing , vol.64 , pp. 235-252
    • Svensen, M.1    Bishop, C.M.2
  • 11
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mar.
    • P. Mitra and C. A. Murthy, "Unsupervised feature selection using feature similarity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.A.2
  • 12
    • 0037342804 scopus 로고    scopus 로고
    • Unsupervised feature selection applied to content-based retrieval of lung images
    • Mar.
    • J. G. Dy, C. E. Brodley, A. Kak, L. S. Broderick, and A. M. Aisen, "Unsupervised feature selection applied to content-based retrieval of lung images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 3, pp. 373-378, Mar. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.3 , pp. 373-378
    • Dy, J.G.1    Brodley, C.E.2    Kak, A.3    Broderick, L.S.4    Aisen, A.M.5
  • 13
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Mar.
    • S. J. Raudys and A. K. Jain, "Small sample size effects in statistical pattern recognition: Recommendations for practitioners," IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 3, pp. 252-264, Mar. 1991.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 14
    • 79952352233 scopus 로고    scopus 로고
    • Evolving classification of agent's behaviors: A general approach
    • J. A. Iglesias, P. Angelov, A. Ledezma, and A. Sanchis, "Evolving classification of agent's behaviors: A general approach," Evolving Syst., vol. 1, no. 3, pp. 161-171, 2010.
    • (2010) Evolving Syst. , vol.1 , Issue.3 , pp. 161-171
    • Iglesias, J.A.1    Angelov, P.2    Ledezma, A.3    Sanchis, A.4
  • 15
    • 84880395855 scopus 로고    scopus 로고
    • A characterization framework for epileptic signals
    • Dec.
    • D. M. Vázquez, J. J. Rubio, and J. Pacheco, "A characterization framework for epileptic signals," IET Image Process., vol. 6, no. 9, pp. 1227-1235, Dec. 2012.
    • (2012) IET Image Process , vol.6 , Issue.9 , pp. 1227-1235
    • Vázquez, D.M.1    Rubio, J.J.2    Pacheco, J.3
  • 17
    • 84874019368 scopus 로고    scopus 로고
    • A method for online pattern recognition of abnormal eye movements
    • J. J. Rubio, F. Ortiz, C. R. Mariaca, and J. C. Tovar, "A method for online pattern recognition of abnormal eye movements," Neural Comput. Appl., vol. 22, no. 3, pp. 597-605, 2013.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3 , pp. 597-605
    • Rubio, J.J.1    Ortiz, F.2    Mariaca, C.R.3    Tovar, J.C.4
  • 18
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Sep.
    • M. H. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.H.1    Figueiredo, M.A.T.2    Jain, A.K.3
  • 19
  • 20
    • 64849084369 scopus 로고    scopus 로고
    • Simultaneous localized feature selection and model detection for Gaussian mixtures
    • May
    • Y. H. Li, M. Dong, and J. Hua, "Simultaneous localized feature selection and model detection for Gaussian mixtures," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 953-960, May 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.5 , pp. 953-960
    • Li, Y.H.1    Dong, M.2    Hua, J.3
  • 21
    • 84874575105 scopus 로고    scopus 로고
    • Bayesian feature selection and model detection for Student's t-mixture distributions
    • Nov.
    • H. Zhang, Q. M. J. Wu, and M. N. Thanh, "Bayesian feature selection and model detection for Student's t-mixture distributions," in Proc. IEEE Int. Conf. Pattern Recognit., Nov. 2012, pp. 1631-1634.
    • (2012) Proc. IEEE Int. Conf. Pattern Recognit. , pp. 1631-1634
    • Zhang, H.1    Wu, Q.M.J.2    Thanh, M.N.3
  • 22
    • 0033201365 scopus 로고    scopus 로고
    • Automated model-based tissue classification of MR images of the brain
    • Oct.
    • K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens, "Automated model-based tissue classification of MR images of the brain," IEEE Trans. Med. Imag., vol. 18, no. 10, pp. 897-908, Oct. 1999.
    • (1999) IEEE Trans. Med. Imag. , vol.18 , Issue.10 , pp. 897-908
    • Van Leemput, K.1    Maes, F.2    Vandermeulen, D.3    Suetens, P.4
  • 23
    • 84888002318 scopus 로고    scopus 로고
    • A nonsymmetric mixture model for unsupervised image segmentation
    • Apr.
    • M. N. Thanh and Q. M. J. Wu, "A nonsymmetric mixture model for unsupervised image segmentation," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 43, no. 2, pp. 751-765, Apr. 2013.
    • (2013) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.43 , Issue.2 , pp. 751-765
    • Thanh, M.N.1    Wu, Q.M.J.2
  • 26
  • 27
    • 80051548719 scopus 로고    scopus 로고
    • Identification of extended Hammerstein systems using dynamic self-optimizing neural networks
    • Aug.
    • X. Ren and X. Lv, "Identification of extended Hammerstein systems using dynamic self-optimizing neural networks," IEEE Trans. Neural Netw., vol. 22, no. 8, pp. 1169-1179, Aug. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.8 , pp. 1169-1179
    • Ren, X.1    Lv, X.2
  • 28
    • 79952195647 scopus 로고    scopus 로고
    • Uniformly stable backpropagation algorithm to train a feedforward neural network
    • Mar.
    • J. J. Rubio, P. Angelov, and J. Pacheco, "Uniformly stable backpropagation algorithm to train a feedforward neural network," IEEE Trans. Neural Netw., vol. 22, no. 3, pp. 356-366, Mar. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.3 , pp. 356-366
    • Rubio, J.J.1    Angelov, P.2    Pacheco, J.3
  • 29
    • 79960697024 scopus 로고    scopus 로고
    • Fuzzily connected multimodel systems evolving autonomously from data streams
    • Aug.
    • P. Angelov, "Fuzzily connected multimodel systems evolving autonomously from data streams," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 4, pp. 898-910, Aug. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.41 , Issue.4 , pp. 898-910
    • Angelov, P.1
  • 30
    • 84878419271 scopus 로고    scopus 로고
    • Modified optimal control with a backpropagation network for robotic arms
    • Sep.
    • J. J. Rubio, "Modified optimal control with a backpropagation network for robotic arms," IET Control Theory Appl., vol. 6, no. 14, pp. 2216-2225, Sep. 2012.
    • (2012) IET Control Theory Appl. , vol.6 , Issue.14 , pp. 2216-2225
    • Rubio, J.J.1
  • 31
    • 84860249350 scopus 로고    scopus 로고
    • Boundedness and convergence of bath backpropagation algorithm with penalty with feedforward neural networks
    • W. Zhang, W. Wu, and M. Yao, "Boundedness and convergence of bath backpropagation algorithm with penalty with feedforward neural networks," Neurocomputing, vol. 89, no. 1, pp. 141-146, 2012.
    • (2012) Neurocomputing , vol.89 , Issue.1 , pp. 141-146
    • Zhang, W.1    Wu, W.2    Yao, M.3
  • 32
    • 84872783620 scopus 로고    scopus 로고
    • Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown deadzone
    • Nov.
    • J. H. Pérez-Cruz, J. J. Rubio, E. Ruiz-Velázquez, and G. Solís-Perales, "Tracking control based on recurrent neural networks for nonlinear systems with multiple inputs and unknown deadzone," Abstract Appl. Anal., vol. 2012, pp. 1-18, Nov. 2012.
    • (2012) Abstract Appl. Anal. , vol.2012 , pp. 1-18
    • Pérez-Cruz, J.H.1    Rubio, J.J.2    Ruiz-Velázquez, E.3    Solís-Perales, G.4
  • 33
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • Dec.
    • X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," Adv. Neural Inf. Process. Syst., vol. 18, pp. 507-514, Dec. 2005.
    • (2005) Adv. Neural Inf. Process. Syst. , vol.18 , pp. 507-514
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 34
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 1151-1157.
    • (2007) Proc. Int. Conf. Mach. Learn. , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.