메뉴 건너뛰기




Volumn 28, Issue 3, 2014, Pages 801-814

River discharges forecasting in northern Iraq using different ANN techniques

Author keywords

ANNs; Forecasting; Peak flow; River flow; Zab River

Indexed keywords

FLOW OF WATER; FORECASTING; RADIAL BASIS FUNCTION NETWORKS;

EID: 85027938529     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-014-0516-3     Document Type: Article
Times cited : (78)

References (23)
  • 1
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks technique: A Blue Nile catchment case study
    • Antar MA, Elassiouti I, Allam MN (2006) Rainfall-runoff modelling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol Process 20:1201–1216
    • (2006) Hydrol Process , vol.20 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Allam, M.N.3
  • 2
    • 59349109204 scopus 로고    scopus 로고
    • Analysis of drought and storage for Mula project using ANN and stochastic generation models
    • Awchi TA, Srivastava DK (2009) Analysis of drought and storage for Mula project using ANN and stochastic generation models. Hydrol Res 40(1):79–91. doi:10.2166/nh.2009.012
    • (2009) Hydrol Res , vol.40 , Issue.1 , pp. 79-91
    • Awchi, T.A.1    Srivastava, D.K.2
  • 4
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau KW, Wu CL, Li YS (2005) Comparison of several flood forecasting models in Yangtze River. J Hydrol Eng ASCE 10(6):485–491
    • (2005) J Hydrol Eng ASCE , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 5
    • 85028228820 scopus 로고    scopus 로고
    • Neural network toolbox for use with MATLAB. User guide version 6.0
    • Demuth H, Beale M, Hagan M (2008) Neural network toolbox for use with MATLAB. User guide version 6.0, The MathWorks Inc. http://www.mathworks.com
    • (2008) The Mathworks Inc
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 6
    • 79952700587 scopus 로고    scopus 로고
    • Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia
    • Edossa DC, Babel MS (2011) Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water Resour Manag 25:1759–1773. doi:10.1007/s11269-010-9773-y
    • (2011) Water Resour Manag , vol.25 , pp. 1759-1773
    • Edossa, D.C.1    Babel, M.S.2
  • 7
    • 60849104783 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for municipal water consumption modeling
    • Firat M, Yurdusev MA, Turan ME (2009) Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resour Manag J 23(4):617–632
    • (2009) Water Resour Manag J , vol.23 , Issue.4 , pp. 617-632
    • Firat, M.1    Yurdusev, M.A.2    Turan, M.E.3
  • 8
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall –runoff process
    • Hsu K, Gupta V, Sorooshian S (1995) Artificial neural network modeling of the rainfall –runoff process. Water Resour Res 31(10):2517–2530
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, V.2    Sorooshian, S.3
  • 9
    • 84908492571 scopus 로고    scopus 로고
    • Comparison of multi-layer perceptron and radial basis function network as tools for flood forecasting
    • Jayawardena AW, Fernando DA (1996) Comparison of multi-layer perceptron and radial basis function network as tools for flood forecasting. Proc. North Am. Water and Envir. Conf. ASCE New York 457–458
    • (1996) Proc. North Am. Water and Envir. Conf. ASCE New York , pp. 457-458
    • Jayawardena, A.W.1    Fernando, D.A.2
  • 10
    • 0001500034 scopus 로고
    • Evaluation of hydrological forecasting system based on neural network model
    • International Association for Hydraulic Research, Delft, the Netherlands
    • Kang KW, Kim JH, Park CY, Ham KJ (1993) Evaluation of hydrological forecasting system based on neural network model. Proc. 25th Congress of Int. Assoc. for Hydr. Res. International Association for Hydraulic Research, Delft, the Netherlands, pp 257–264
    • (1993) Proc. 25Th Congress of Int. Assoc. For Hydr. Res , pp. 257-264
    • Kang, K.W.1    Kim, J.H.2    Park, C.Y.3    Ham, K.J.4
  • 11
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kişi O (2004) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63
    • (2004) J Hydrol Eng , vol.9 , Issue.1 , pp. 60-63
    • Kişi, O.1
  • 12
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kişi O (2008) River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res 39(1):27–40
    • (2008) Hydrol Res , vol.39 , Issue.1 , pp. 27-40
    • Kişi, O.1
  • 13
    • 84855232291 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting by using several data driven techniques
    • Kişi O, Nia AM, Gosheh MG, Tajabadi MR, Ahmadi A (2012) Intermittent streamflow forecasting by using several data driven techniques. Water Resour Manag 26:457–474. doi:10.1007/s11269-011-9926-7
    • (2012) Water Resour Manag , vol.26 , pp. 457-474
    • Kişi, O.1    Nia, A.M.2    Gosheh, M.G.3    Tajabadi, M.R.4    Ahmadi, A.5
  • 18
    • 0029413038 scopus 로고
    • Multivariate modeling of water resources time series using artificial neural networks
    • Raman H, Sunilkumar N (1995) Multivariate modeling of water resources time series using artificial neural networks. Hydrol Sci J 40(2):145–163
    • (1995) Hydrol Sci J , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 19
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • Sahoo GB, Ray C (2006) Flow forecasting for a Hawaii stream using rating curves and neural networks. J Hydrol 317:63–80
    • (2006) J Hydrol , vol.317 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 20
    • 0344701685 scopus 로고    scopus 로고
    • Neural Networks for applied science and engineering
    • Auerbach Publications
    • Samarasinghe S (2006) Neural Networks for applied science and engineering, Auerbach Publications, Taylor & Francis group, LLC
    • (2006) Taylor & Francis Group, LLC
    • Samarasinghe, S.1
  • 21
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 22
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modelling rating curves
    • Sudheer KP, Jain SK (2003) Radial basis function neural network for modelling rating curves. J Hydrolog Eng 8(3):161–164
    • (2003) J Hydrolog Eng , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 23
    • 79960702239 scopus 로고    scopus 로고
    • Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network
    • Sulaiman M, El-Shafie A, Karim O, Basri H (2011) Improved water level forecasting performance by using optimal steepness coefficients in an artificial neural network. Water Resour Manag 25:2525–2541. doi:10.1007/s11269-011-9824-z
    • (2011) Water Resour Manag , vol.25 , pp. 2525-2541
    • Sulaiman, M.1    El-Shafie, A.2    Karim, O.3    Basri, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.