메뉴 건너뛰기




Volumn 8, Issue 6, 2015, Pages 2513-2522

A Nonlinear Sparse Representation-Based Binary Hypothesis Model for Hyperspectral Target Detection

Author keywords

Binary hypothesis; hyperspectral imagery (HSI); kernel; sparse representation; target detection

Indexed keywords

MIXTURES; SPECTROSCOPY; TARGET TRACKING;

EID: 85027919151     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2368173     Document Type: Article
Times cited : (46)

References (33)
  • 1
    • 0036564142 scopus 로고    scopus 로고
    • Target signature-constrained mixed pixel classification for hyperspectral imagery
    • Aug.
    • C.-I. Chang, "Target signature-constrained mixed pixel classification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1065-1081, Aug. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.5 , pp. 1065-1081
    • Chang, C.-I.1
  • 2
    • 33644868367 scopus 로고    scopus 로고
    • Kernel matched subspace detectors for hyperspectral target detection
    • Feb.
    • H. Kwon and N. M. Nasrabadi, "Kernel matched subspace detectors for hyperspectral target detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 2, pp. 178-194, Feb. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.2 , pp. 178-194
    • Kwon, H.1    Nasrabadi, N.M.2
  • 3
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid detectors based on selective endmembers
    • May
    • L. Zhang, B. Du, and Y. Zhong, "Hybrid detectors based on selective endmembers," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2633-2646, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 4
    • 84863976875 scopus 로고    scopus 로고
    • A discriminative manifold learning based dimension reduction method for hyperspectral classification
    • Jun.
    • B. Du, L. Zhang, L. Zhang, T. Chen, and K. Wu, "A discriminative manifold learning based dimension reduction method for hyperspectral classification," Int. J. Fuzzy Syst., vol. 14, no. 2, pp. 272-277, Jun. 2012.
    • (2012) Int. J. Fuzzy Syst. , vol.14 , Issue.2 , pp. 272-277
    • Du, B.1    Zhang, L.2    Zhang, L.3    Chen, T.4    Wu, K.5
  • 5
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan.
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 6
    • 77955682014 scopus 로고    scopus 로고
    • A tutorial overview of anomaly detection in hyperspectral images
    • Jul.
    • S. Matteoli, M. Diani, and G. Corsini, "A tutorial overview of anomaly detection in hyperspectral images," IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp. 5-28, Jul. 2010.
    • (2010) IEEE Aerosp. Electron. Syst. Mag. , vol.25 , Issue.7 , pp. 5-28
    • Matteoli, S.1    Diani, M.2    Corsini, G.3
  • 7
    • 79955590723 scopus 로고    scopus 로고
    • Random-selection-based anomaly detector for hyperspectral imagery
    • Apr.
    • B. Du and L. Zhang, "Random-selection-based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, Apr. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 8
    • 0000218155 scopus 로고
    • Imaging spectroscopy: Interpretation based on spectral mixture analysis
    • C. M. Pieters and P. A. J. Englert, Eds. Cambridge, U.K.: Cambridge Univ. Press, ch. 7
    • J. B. Adams, M. O. Smith, and A. R. Gillespie, "Imaging spectroscopy: Interpretation based on spectral mixture analysis," in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters and P. A. J. Englert, Eds. Cambridge, U.K.: Cambridge Univ. Press, 1993, ch. 7, pp. 145-166.
    • (1993) Remote Geochemical Analysis: Elemental and Mineralogical Composition , pp. 145-166
    • Adams, J.B.1    Smith, M.O.2    Gillespie, A.R.3
  • 9
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Marden, and G. A. Shaw, "Hyperspectral image processing for automatic target detection applications," J. Lincoln Lab., vol. 14, no. 1, pp. 79-116, 2003.
    • (2003) J. Lincoln Lab. , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 10
  • 11
    • 0037209421 scopus 로고    scopus 로고
    • Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery
    • Q. Du and H. Ren, "Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery," Pattern Recognit., vol. 36, no. 1, pp. 1-12, 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.1 , pp. 1-12
    • Du, Q.1    Ren, H.2
  • 13
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation for target detection in hyperspectral imagery
    • Jun.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Sparse representation for target detection in hyperspectral imagery," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 629-640, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 14
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint sparsity model for target detection in hyperspectral imagery
    • Jul.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Simultaneous joint sparsity model for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 676-680, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 15
    • 84894268636 scopus 로고    scopus 로고
    • Hyperspectral target detection with sparseness constraint
    • Melbourne, Australia, Jul.
    • B. Ma and Q. Du, "Hyperspectral target detection with sparseness constraint," in Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp. (IGARSS), Melbourne, Australia, Jul. 2013, pp. 1059-1062.
    • (2013) Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp. (IGARSS) , pp. 1059-1062
    • Ma, B.1    Du, Q.2
  • 16
    • 84877922661 scopus 로고    scopus 로고
    • A Kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection
    • Apr.
    • T. Wang, B. Du, and L. Zhang, "A Kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 626-637, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 626-637
    • Wang, T.1    Du, B.2    Zhang, L.3
  • 17
    • 29044445372 scopus 로고    scopus 로고
    • Kernel orthogonal subspace projection for hyperspectral signal classification
    • Nov.
    • H. Kwon and N. M. Nasrabadi, "Kernel orthogonal subspace projection for hyperspectral signal classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 12, pp. 2952-2962, Nov. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.12 , pp. 2952-2962
    • Kwon, H.1    Nasrabadi, N.M.2
  • 20
    • 77952743135 scopus 로고    scopus 로고
    • Computational methods for sparse solution of linear inverse problems
    • Jun.
    • J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE, vol. 98, no. 6, pp. 948-958, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 948-958
    • Tropp, J.A.1    Wright, S.J.2
  • 21
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Dec.
    • J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 26
    • 0344082849 scopus 로고    scopus 로고
    • Dual-window-based anomaly detection for hyperspectral imagery
    • H. Kwon, S. Z. Der, and N. M. Nasrabadi, "Dual-window-based anomaly detection for hyperspectral imagery," in Proc. SPIE, 2003, vol. 5094, pp. 148-158.
    • (2003) Proc. SPIE , vol.5094 , pp. 148-158
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 27
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Aug.
    • A. Banerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 30
    • 84888290238 scopus 로고    scopus 로고
    • Regularization framework for target detection in hyperspectral imagery
    • Jan.
    • Y. Zhang, B. Du, and L. Zhang, "Regularization framework for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 313-317, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 313-317
    • Zhang, Y.1    Du, B.2    Zhang, L.3
  • 31
    • 84891011267 scopus 로고    scopus 로고
    • Sparse transfer manifold embedding for hyperspectral target detection
    • Feb.
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "Sparse transfer manifold embedding for hyperspectral target detection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1030-1043, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1030-1043
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 32
    • 34250727580 scopus 로고    scopus 로고
    • The relationship between Precision-Recall and ROC curves
    • Pittsburgh, PA, USA
    • J. Davis and M. Goadrich, "The relationship between Precision-Recall and ROC curves," in Proc. 23rd Int. Conf. Mach. Learn., Pittsburgh, PA, USA, 2006, pp. 233-240.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 233-240
    • Davis, J.1    Goadrich, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.