메뉴 건너뛰기




Volumn 11, Issue 1, 2014, Pages 313-317

Regularization framework for target detection in hyperspectral imagery

Author keywords

Hyperspectral imagery; inverse matrix; regularization; target detection

Indexed keywords

DETECTION PERFORMANCE; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL IMAGERY; INVERSE CALCULATION; INVERSE MATRIX; REGULARIZATION; REGULARIZATION FRAMEWORK; SIGNAL PROCESSING FIELDS;

EID: 84888290238     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2013.2257666     Document Type: Article
Times cited : (28)

References (14)
  • 1
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct.
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoustics Speech Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoustics Speech Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 2
    • 79955590723 scopus 로고    scopus 로고
    • Random selection based anomaly detector for hyperspectral imagery
    • May
    • B. Du and L. Zhang, "Random selection based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2
  • 4
    • 0030617350 scopus 로고    scopus 로고
    • Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique
    • W. H. Farrand and J. C. Harsanyi, "Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique," Remote Sens. Environ., vol. 59, no. 1, pp. 64-76, 1997.
    • (1997) Remote Sens. Environ. , vol.59 , Issue.1 , pp. 64-76
    • Farrand, W.H.1    Harsanyi, J.C.2
  • 5
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • DOI 10.1109/TGRS.2004.841487
    • K. Heesung and N. M. Nasrabadi, "Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 388-397, Feb. 2005. (Pubitemid 40178510)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 6
    • 27544444301 scopus 로고    scopus 로고
    • A comparative study of kernel spectral matched signal detectors for hyperspectral target detection
    • DOI 10.1117/12.602182, 86, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • H. Kwon and N. M. Nasrabadi, "A comparative study of kernel spectral matched signal detectors for hyperspectral target detection," in Proc. SPIE, vol. 5806, pp. 827-838, 2005. (Pubitemid 41545048)
    • (2005) Proceedings of SPIE - The International Society for Optical Engineering , vol.5806 , Issue.PART II , pp. 827-838
    • Kwon, H.1    Nasrabadi, N.M.2
  • 7
    • 44949202638 scopus 로고    scopus 로고
    • Kernel-based constrained energy minimization (K-CEM)
    • X. Jiao and C. I. Chang, "Kernel-based constrained energy minimization (K-CEM)," in Proc. SPIE, vol. 6966. 2008, p. 69661S.
    • (2008) Proc. SPIE , vol.6966
    • Jiao, X.1    Chang, C.I.2
  • 8
    • 84877922661 scopus 로고    scopus 로고
    • A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection
    • T. Wang, B. Du, and L. Zhang, "A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection," IEEE J. Select. Topics Earth Observations Remote Sens., vol. 2, no. 6, pp. 626-637, 2013.
    • (2013) IEEE J. Select. Topics Earth Observations Remote Sens. , vol.2 , Issue.6 , pp. 626-637
    • Wang, T.1    Du, B.2    Zhang, L.3
  • 9
    • 84888295800 scopus 로고    scopus 로고
    • Unsupervised transfer learning for target detection from hyperspectral images
    • DOI:10.1016/j.neucom.2012.08.05
    • B. Du and L. Zhang, "Unsupervised transfer learning for target detection from hyperspectral images," Neurocomput., 2012. DOI:10.1016/j.neucom.2012.08.05.
    • (2012) Neurocomput.
    • Du, B.1    Zhang, L.2
  • 10
    • 0347603473 scopus 로고    scopus 로고
    • Adaptive anomaly detection using subspace separation for hyperspectral imagery
    • H. Kwon, S. Z. Der, and N. M. Nasrabadi, "Adaptive anomaly detection using subspace separation for hyperspectral imagery," Opt. Eng., vol. 42, no. 11, pp. 3342-3351, 2003.
    • (2003) Opt. Eng. , vol.42 , Issue.11 , pp. 3342-3351
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 11
    • 1942423586 scopus 로고    scopus 로고
    • Refinement and generalization of the extension method of covariance matrix inversion by regularization for spectral filtering optimization
    • D. R. Twede and A. F. Hayden, "Refinement and generalization of the extension method of covariance matrix inversion by regularization for spectral filtering optimization," in Proc. SPIE, vol. 5159. 2004, pp. 299-306.
    • (2004) Proc. SPIE , vol.5159 , pp. 299-306
    • Twede, D.R.1    Hayden, A.F.2
  • 12
    • 66249142802 scopus 로고    scopus 로고
    • Regularized spectral matched filter for target recognition in hyperspectral imagery
    • N. M. Nasrabadi, "Regularized spectral matched filter for target recognition in hyperspectral imagery," IEEE Signal Process., vol. 15, pp. 317-320, 2008.
    • (2008) IEEE Signal Process , vol.15 , pp. 317-320
    • Nasrabadi, N.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.