메뉴 건너뛰기




Volumn 33, Issue 18, 2014, Pages 3167-3178

Joint modeling of two longitudinal outcomes and competing risk data

Author keywords

Competing risk; Continuation ratio mixed effects model; Heart valve replacement; Joint model; Linear mixed effects model

Indexed keywords

BIOLOGICAL MARKER;

EID: 84903818599     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6158     Document Type: Article
Times cited : (69)

References (17)
  • 3
    • 76749116117 scopus 로고    scopus 로고
    • Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS tr-PA stroke trial
    • Li N, Elashoff RM, Li G, Saver J. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS tr-PA stroke trial. Statistics in Medicine 2010; 29(5):546-557.
    • (2010) Statistics in Medicine , vol.29 , Issue.5 , pp. 546-557
    • Li, N.1    Elashoff, R.M.2    Li, G.3    Saver, J.4
  • 4
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach
    • Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a gibbs sampling approach. Statistics in Medicine 1996; 15:1663-1685.
    • (1996) Statistics in Medicine , vol.15 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 5
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics 1997; 53:330-339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 6
    • 0041833567 scopus 로고    scopus 로고
    • Bayesian approaches to joint cure-rate and longitudinal models with applications to cancer vaccine trials
    • Brown ER, Ibrahim JG. Bayesian approaches to joint cure-rate and longitudinal models with applications to cancer vaccine trials. Biometrics 2003; 59:686-693.
    • (2003) Biometrics , vol.59 , pp. 686-693
    • Brown, E.R.1    Ibrahim, J.G.2
  • 7
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • Song X, Davidian M, Tsiatis AA. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 2002; 58:742-753.
    • (2002) Biometrics , vol.58 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 8
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine 2011; 30:1366-1380.
    • (2011) Statistics in Medicine , vol.30 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 9
    • 15044356987 scopus 로고    scopus 로고
    • A flexible B-spline model for multiple longitudinal biomarkers and survival
    • Brown ER, Ibrahim JG, DeGruttola V. A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 2005; 61:64-73.
    • (2005) Biometrics , vol.61 , pp. 64-73
    • Brown, E.R.1    Ibrahim, J.G.2    DeGruttola, V.3
  • 10
    • 78651422985 scopus 로고    scopus 로고
    • A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
    • Huang X, Li G, Elashoff RM, Pan J. A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Analysis 2011; 17:80-100.
    • (2011) Lifetime Data Analysis , vol.17 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.M.3    Pan, J.4
  • 11
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff RM, Li G, Li N. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 2008; 64:762-771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 12
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 2011; 67:819-829.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 13
    • 70149108170 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach
    • Proust-Lima C, Taylor JM. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach. Biostatistics 2009; 10:535-549.
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.M.2
  • 14
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: an overview
    • Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 15
    • 8644269772 scopus 로고    scopus 로고
    • Joint longitudinal-survival-cure models and their application to prostate cancer
    • Yu M, Law N, Taylor J, Sandler H. Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica 2004; 14:835-862.
    • (2004) Statistica Sinica , vol.14 , pp. 835-862
    • Yu, M.1    Law, N.2    Taylor, J.3    Sandler, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.