메뉴 건너뛰기




Volumn 26, Issue 4, 2017, Pages 1654-1670

The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes

Author keywords

bias; full matching; inverse probability of treatment weighting; IPTW; Monte Carlo simulations; observational studies; Propensity score

Indexed keywords

ARTICLE; CONFOUNDING VARIABLE; CONTROLLED STUDY; HAZARD RATIO; INTERMETHOD COMPARISON; INVERSE PROBABILITY OF TREATMENT WEIGHTING; MONTE CARLO METHOD; OBSERVATIONAL STUDY; PROBABILITY; PROPENSITY SCORE; SIMULATION; SURVIVAL ANALYSIS; SURVIVAL RATE; TREATMENT OUTCOME; HUMAN; PROPORTIONAL HAZARDS MODEL; STATISTICAL BIAS;

EID: 85027684018     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280215584401     Document Type: Article
Times cited : (226)

References (41)
  • 2
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens GW,. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev Econom Stat 2004; 86: 4-29.
    • (2004) Rev Econom Stat , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 3
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC,. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 2008; 27: 2037-2049.
    • (2008) Stat Med , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 4
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB,. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 5
    • 0000157861 scopus 로고
    • Model-based direct adjustment
    • Rosenbaum PR,. Model-based direct adjustment. J Am Stat Assoc 1987; 82: 387-394.
    • (1987) J Am Stat Assoc , vol.82 , pp. 387-394
    • Rosenbaum, P.R.1
  • 6
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity-score methods for reducing the effects of confounding in observational studies
    • Austin PC,. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behavio Res 2011; 46: 399-424.
    • (2011) Multivariate Behavio Res , vol.46 , pp. 399-424
    • Austin, P.C.1
  • 7
    • 67249139797 scopus 로고    scopus 로고
    • A report card on propensity-score matching in the cardiology literature from 2004 to 2006: A systematic review and suggestions for improvement
    • Austin PC,. A report card on propensity-score matching in the cardiology literature from 2004 to 2006: A systematic review and suggestions for improvement. Circulation: Cardiovasc Qual Outcome 2008; 1: 62-67.
    • (2008) Circulation: Cardiovasc Qual Outcome , vol.1 , pp. 62-67
    • Austin, P.C.1
  • 8
    • 35448972461 scopus 로고    scopus 로고
    • Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: A systematic review and suggestions for improvement
    • Austin PC,. Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement. J Thoracic Cardiovasc Surg 2007; 134: 1128-1135.
    • (2007) J Thoracic Cardiovasc Surg , vol.134 , pp. 1128-1135
    • Austin, P.C.1
  • 9
    • 0003138938 scopus 로고
    • Comparison of multivariate matching methods: Structures, distances, and algorithms
    • Gu XS, Rosenbaum PR,. Comparison of multivariate matching methods: structures, distances, and algorithms. J Computat Graphic Statist 1993; 2: 405-420.
    • (1993) J Computat Graphic Statist , vol.2 , pp. 405-420
    • Gu, X.S.1    Rosenbaum, P.R.2
  • 10
    • 0034100672 scopus 로고    scopus 로고
    • Substantial gains in bias reduction from matching with a variable number of controls
    • Ming K, Rosenbaum PR,. Substantial gains in bias reduction from matching with a variable number of controls. Biometrics 2000; 56: 118-124.
    • (2000) Biometrics , vol.56 , pp. 118-124
    • Ming, K.1    Rosenbaum, P.R.2
  • 11
    • 77958523826 scopus 로고    scopus 로고
    • Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score
    • Austin PC,. Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score. Am J Epidemiol 2010; 172: 1092-1097.
    • (2010) Am J Epidemiol , vol.172 , pp. 1092-1097
    • Austin, P.C.1
  • 12
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • Stuart EA,. Matching methods for causal inference: A review and a look forward. Statis Sci 2010; 25: 1-21.
    • (2010) Statis Sci , vol.25 , pp. 1-21
    • Stuart, E.A.1
  • 13
    • 0000180788 scopus 로고
    • A characterization of optimal designs for observational studies
    • Rosenbaum PR,. A characterization of optimal designs for observational studies. J Royal Stat Soc-Series B 1991; 53: 597-610.
    • (1991) J Royal Stat Soc - Series B , vol.53 , pp. 597-610
    • Rosenbaum, P.R.1
  • 14
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the SAT
    • Hansen BB,. Full matching in an observational study of coaching for the SAT. J Am Stat Assoc 2004; 99: 609-618.
    • (2004) J Am Stat Assoc , vol.99 , pp. 609-618
    • Hansen, B.B.1
  • 15
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum PR, Rubin DB,. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Statistician 1985; 39: 33-38.
    • (1985) Am Statistician , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 16
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: A review of trials published in leading medical journals
    • Austin PC, Manca A, Zwarenstein M, et al. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol 2010; 63: 142-153.
    • (2010) J Clin Epidemiol , vol.63 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3
  • 17
    • 84861097401 scopus 로고    scopus 로고
    • Propensity score applied to survival data analysis through proportional hazards models: A Monte Carlo study
    • Gayat E, Resche-Rigon M, Mary JY, et al. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceut Stat 2012; 11: 222-229.
    • (2012) Pharmaceut Stat , vol.11 , pp. 222-229
    • Gayat, E.1    Resche-Rigon, M.2    Mary, J.Y.3
  • 18
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study
    • Austin PC, Grootendorst P, Normand SL, et al. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statist Med 2007; 26: 754-768.
    • (2007) Statist Med , vol.26 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.3
  • 19
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal hazard ratios
    • Austin PC,. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med 2013; 32: 2837-2849.
    • (2013) Stat Med , vol.32 , pp. 2837-2849
    • Austin, P.C.1
  • 21
    • 34249885738 scopus 로고    scopus 로고
    • Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    • Ho DE, Imai K, King G, et al. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 2007; 15: 199-236.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.E.1    Imai, K.2    King, G.3
  • 22
    • 79958747321 scopus 로고    scopus 로고
    • MatchIt: Nonparametric preprocessing for parametric causal inference
    • Ho DE, Imai K, King G, et al. MatchIt: Nonparametric preprocessing for parametric causal inference. J Stat Software 2011; 42. http://imai.princeton.edu/research/files/matchit.pdf.
    • (2011) J Stat Software , vol.42
    • Ho, D.E.1    Imai, K.2    King, G.3
  • 23
    • 84860333562 scopus 로고    scopus 로고
    • Mortality following nursing home-acquired lower respiratory infection: LRI severity, antibiotic treatment, and water intake
    • Szafara KL, Kruse RL, Mehr DR, et al. Mortality following nursing home-acquired lower respiratory infection: LRI severity, antibiotic treatment, and water intake. J Am Med Dir Assoc 2012; 13: 376-383.
    • (2012) J Am Med Dir Assoc , vol.13 , pp. 376-383
    • Szafara, K.L.1    Kruse, R.L.2    Mehr, D.R.3
  • 24
    • 8744315994 scopus 로고    scopus 로고
    • Model selection, confounder control, and marginal structural models: Review and new applications
    • Joffe MM, Ten Have TR, Feldman HI, et al. Model selection, confounder control, and marginal structural models: Review and new applications. Am Statist 2004; 58: 272-279.
    • (2004) Am Statist , vol.58 , pp. 272-279
    • Joffe, M.M.1    Ten Have, T.R.2    Feldman, H.I.3
  • 25
    • 2442628111 scopus 로고    scopus 로고
    • Adjusted survival curves with inverse probability weights
    • Cole SR, Hernan MA,. Adjusted survival curves with inverse probability weights. Comput Meth Progr Biomed 2004; 75: 45-49.
    • (2004) Comput Meth Progr Biomed , vol.75 , pp. 45-49
    • Cole, S.R.1    Hernan, M.A.2
  • 26
    • 84892372742 scopus 로고
    • The robust inference for the proportional hazards model
    • Lin DY, Wei LJ,. The robust inference for the proportional hazards model. J Am Statist Assoc 1989; 84: 1074-1078.
    • (1989) J Am Statist Assoc , vol.84 , pp. 1074-1078
    • Lin, D.Y.1    Wei, L.J.2
  • 27
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M,. Generating survival times to simulate Cox proportional hazards models. Stat Med 2005; 24: 1713-1723.
    • (2005) Stat Med , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 28
    • 84908056108 scopus 로고    scopus 로고
    • The use of bootstrapping when using propensity-score matching without replacement: A simulation study
    • Austin PC, Small DS,. The use of bootstrapping when using propensity-score matching without replacement: A simulation study. Stat Med 2014; 33: 4306-4319.
    • (2014) Stat Med , vol.33 , pp. 4306-4319
    • Austin, P.C.1    Small, D.S.2
  • 29
    • 84989847164 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study
    • Austin PC and Schuster T. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study. Stat Meth Med Res 2015 25: 2214-2237.
    • (2015) Stat Meth Med Res , vol.25 , pp. 2214-2237
    • Austin, P.C.1    Schuster, T.2
  • 30
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • Austin PC,. A data-generation process for data with specified risk differences or numbers needed to treat. Commun Stat-Simul Computat 2010; 39: 563-577.
    • (2010) Commun Stat - Simul Computat , vol.39 , pp. 563-577
    • Austin, P.C.1
  • 31
    • 47749131861 scopus 로고    scopus 로고
    • The performance of two data-generation processes for data with specified marginal treatment odds ratios
    • Austin PC, Stafford J,. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Commun Stat-Simul Computat 2008; 37: 1039-1051.
    • (2008) Commun Stat - Simul Computat , vol.37 , pp. 1039-1051
    • Austin, P.C.1    Stafford, J.2
  • 32
    • 77958600686 scopus 로고    scopus 로고
    • Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
    • Austin PC,. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceut Stat 2011; 10: 150-161.
    • (2011) Pharmaceut Stat , vol.10 , pp. 150-161
    • Austin, P.C.1
  • 33
    • 60449086859 scopus 로고    scopus 로고
    • Dealing with limited overlap in estimation of average treatment effects
    • Crump RK, Hotz VJ, Imbens GW, et al. Dealing with limited overlap in estimation of average treatment effects. Biometrika 2009; 96: 187-199.
    • (2009) Biometrika , vol.96 , pp. 187-199
    • Crump, R.K.1    Hotz, V.J.2    Imbens, G.W.3
  • 34
    • 17844393082 scopus 로고    scopus 로고
    • Reader's guide to critical appraisal of cohort studies: 2. Assessing potential for confounding
    • Mamdani M, Sykora K, Li P, et al. Reader's guide to critical appraisal of cohort studies: 2. Assessing potential for confounding. British Med J 2005; 330: 960-962.
    • (2005) British Med J , vol.330 , pp. 960-962
    • Mamdani, M.1    Sykora, K.2    Li, P.3
  • 35
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA,. Improving propensity score weighting using machine learning. Stat Med 2010; 29: 337-346.
    • (2010) Stat Med , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 36
    • 46349084991 scopus 로고    scopus 로고
    • Evaluating uses of data mining techniques in propensity score estimation: A simulation study
    • Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol Drug Safe 2008; 17: 546-555.
    • (2008) Pharmacoepidemiol Drug Safe , vol.17 , pp. 546-555
    • Setoguchi, S.1    Schneeweiss, S.2    Brookhart, M.A.3
  • 37
    • 84857342493 scopus 로고    scopus 로고
    • Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based G-computation
    • Austin PC,. Using ensemble-based methods for directly estimating causal effects: An investigation of tree-based G-computation. Multivariate Behavior Res 2012; 47: 115-135.
    • (2012) Multivariate Behavior Res , vol.47 , pp. 115-135
    • Austin, P.C.1
  • 38
    • 84856187945 scopus 로고    scopus 로고
    • Causal inference without balance checking: Coarsened exact matching
    • Iacus SM, King G, Porro G,. Causal inference without balance checking: coarsened exact matching. Political Analysis 2012; 20: 1-24.
    • (2012) Political Analysis , vol.20 , pp. 1-24
    • Iacus, S.M.1    King, G.2    Porro, G.3
  • 39
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang J, Schafer J,. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 2007; 22: 523-580.
    • (2007) Stat Sci , vol.22 , pp. 523-580
    • Kang, J.1    Schafer, J.2
  • 40
    • 79953304087 scopus 로고    scopus 로고
    • Weight trimming and propensity score weighting
    • Lee BK, Lessler J, Stuart EA,. Weight trimming and propensity score weighting. PLoS One 2011; 6: e18174-e18174.
    • (2011) PLoS One , vol.6 , pp. e18174-e18174
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 41
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR,. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Meth 2004; 9: 403-425.
    • (2004) Psychological Meth , vol.9 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.