메뉴 건너뛰기




Volumn 25, Issue 5, 2016, Pages 2214-2237

The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study

Author keywords

inverse probability of treatment weighting; Monte Carlo simulations; observational study; propensity score; survival analysis; time to event outcomes

Indexed keywords

ABSOLUTE EFFECT; ALGORITHM; ARTICLE; COMPARATIVE STUDY; COMPUTER SIMULATION; CONTROLLED STUDY; DATA GENERATING PROCESS; DATA PROCESSING; EMPIRICAL TYPE I ERROR; ERROR; FOLLOW UP; INVERSE PROBABILITY OF TREATMENT WEIGHT; INVERSE PROBABILITY OF TREATMENT WEIGHTING USING THE PROPENSITY SCORE; KAPLAN MEIER METHOD; MARGINAL SURVIVAL FUNCTION; MONTE CARLO METHOD; NEAREST NEIGHBOUR CALIPER MATCHING; NEAREST NEIGHBOUR MATCHING; OUTCOME ASSESSMENT; PREVALENCE; PROBABILITY; PROPENSITY SCORE MATCHING; PROPENSITY SCORE METHOD; PROPENSITY SCORE STRATIFICATION; SENSITIVITY ANALYSIS; STANDARDIZATION; STATISTICAL ANALYSIS; STATISTICAL CONCEPTS; STATISTICAL DISTRIBUTION; STATISTICAL PARAMETERS; STATISTICAL SIGNIFICANCE; STRATIFICATION; SURVIVAL OUTCOME; SURVIVAL RATE; SURVIVAL TIME; TIME TO EVENT OUTCOME; TREATMENT RESPONSE; WEIGHTED LOG RANK TEST; HUMAN; OBSERVATIONAL STUDY; PROCEDURES; PROPENSITY SCORE; PROPORTIONAL HAZARDS MODEL; STATISTICAL BIAS; SURVIVAL ANALYSIS;

EID: 84989847164     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280213519716     Document Type: Article
Times cited : (137)

References (37)
  • 1
    • 10844259913 scopus 로고    scopus 로고
    • Principles for modeling propensity scores in medical research: A systematic literature review
    • Weitzen S, Lapane KL, Toledano AY, et al. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf 2004; 13: 841-853.
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , pp. 841-853
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3
  • 2
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC,. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med 2008; 27: 2037-2049.
    • (2008) Stat Med , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 3
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB,. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 4
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB,. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 1984; 79: 516-524.
    • (1984) J Am Stat Assoc , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 5
    • 0000157861 scopus 로고
    • Model-based direct adjustment
    • Rosenbaum PR,. Model-based direct adjustment. J Am Stat Assoc 1987; 82: 387-394.
    • (1987) J Am Stat Assoc , vol.82 , pp. 387-394
    • Rosenbaum, P.R.1
  • 6
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity-score methods for reducing the effects of confounding in observational studies
    • Austin PC,. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res 2011; 46: 399-424.
    • (2011) Multivariate Behav Res , vol.46 , pp. 399-424
    • Austin, P.C.1
  • 7
    • 0036740882 scopus 로고    scopus 로고
    • Odds ratio, relative risk, absolute risk reduction, and the number needed to treat - Which of these should we use?
    • Schechtman E,. Odds ratio, relative risk, absolute risk reduction, and the number needed to treat-which of these should we use? Value Health 2002; 5: 431-436.
    • (2002) Value Health , vol.5 , pp. 431-436
    • Schechtman, E.1
  • 8
    • 0028903054 scopus 로고
    • Basic statistics for clinicians: 3. Assessing the effects of treatment: Measures of association
    • Jaeschke R, Guyatt G, Shannon H, et al. Basic statistics for clinicians: 3. Assessing the effects of treatment: measures of association. Can Med Assoc J 1995; 152: 351-357.
    • (1995) Can Med Assoc J , vol.152 , pp. 351-357
    • Jaeschke, R.1    Guyatt, G.2    Shannon, H.3
  • 9
    • 0028908929 scopus 로고
    • The number needed to treat: A clinically useful measure of treatment effect
    • Cook RJ, Sackett DL,. The number needed to treat: a clinically useful measure of treatment effect. Br Med J 1995; 310: 452-454.
    • (1995) Br Med J , vol.310 , pp. 452-454
    • Cook, R.J.1    Sackett, D.L.2
  • 10
    • 0028018289 scopus 로고
    • Clinically useful measures of effect in binary analyses of randomized trials
    • Sinclair JC, Bracken MB,. Clinically useful measures of effect in binary analyses of randomized trials. J Clin Epidemiol 1994; 47: 881-889.
    • (1994) J Clin Epidemiol , vol.47 , pp. 881-889
    • Sinclair, J.C.1    Bracken, M.B.2
  • 11
    • 84989845538 scopus 로고    scopus 로고
    • (accessed 7 January 2014)
    • http://www.bmj.com/about-bmj/resources-authors/article-types/research (accessed 7 January 2014).
  • 12
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study
    • Austin PC, Grootendorst P, Normand SL, et al. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Stat Med 2007; 26: 754-768.
    • (2007) Stat Med , vol.26 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.3
  • 13
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC,. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med 2007; 26: 3078-3094.
    • (2007) Stat Med , vol.26 , pp. 3078-3094
    • Austin, P.C.1
  • 14
    • 43049162150 scopus 로고    scopus 로고
    • The performance of different propensity-score methods for estimating relative risks
    • Austin PC,. The performance of different propensity-score methods for estimating relative risks. J Clin Epidemiol 2008; 61: 537-545.
    • (2008) J Clin Epidemiol , vol.61 , pp. 537-545
    • Austin, P.C.1
  • 15
    • 77956314484 scopus 로고    scopus 로고
    • The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies
    • Austin PC,. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Stat Med 2010; 29: 2137-2148.
    • (2010) Stat Med , vol.29 , pp. 2137-2148
    • Austin, P.C.1
  • 16
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: A review of trials published in leading medical journals
    • Austin PC, Manca A, Zwarenstein M, et al. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol 2010; 63: 142-153.
    • (2010) J Clin Epidemiol , vol.63 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3
  • 17
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal hazard ratios
    • Austin PC,. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med 2013; 32: 2837-2849.
    • (2013) Stat Med , vol.32 , pp. 2837-2849
    • Austin, P.C.1
  • 18
    • 84861097401 scopus 로고    scopus 로고
    • Propensity score applied to survival data analysis through proportional hazards models: A Monte Carlo study
    • Gayat E, Resche-Rigon M, Mary JY, et al. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharm Stat 2012; 11: 222-229.
    • (2012) Pharm Stat , vol.11 , pp. 222-229
    • Gayat, E.1    Resche-Rigon, M.2    Mary, J.Y.3
  • 19
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum PR, Rubin DB,. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat 1985; 39: 33-38.
    • (1985) Am Stat , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 20
    • 77958600686 scopus 로고    scopus 로고
    • Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
    • Austin PC,. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat 2011; 10: 150-161.
    • (2011) Pharm Stat , vol.10 , pp. 150-161
    • Austin, P.C.1
  • 21
    • 0014297593 scopus 로고
    • The effectiveness of adjustment by subclassification in removing bias in observational studies
    • Cochran WG,. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968; 24: 295-313.
    • (1968) Biometrics , vol.24 , pp. 295-313
    • Cochran, W.G.1
  • 22
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford JK, Davidian M,. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 2004; 23: 2937-2960.
    • (2004) Stat Med , vol.23 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 23
    • 2442628111 scopus 로고    scopus 로고
    • Adjusted survival curves with inverse probability weights
    • Cole SR, Hernan MA,. Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed 2004; 75: 45-49.
    • (2004) Comput Methods Programs Biomed , vol.75 , pp. 45-49
    • Cole, S.R.1    Hernan, M.A.2
  • 24
    • 54049137609 scopus 로고    scopus 로고
    • A diagnostic routine for the detection of consequential heterogeneity of causal effects
    • Morgan SL, Todd JL,. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociol Methodol 2008; 38: 231-281.
    • (2008) Sociol Methodol , vol.38 , pp. 231-281
    • Morgan, S.L.1    Todd, J.L.2
  • 25
    • 27144479267 scopus 로고    scopus 로고
    • Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data
    • Xie J, Liu C,. Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med 2005; 24: 3089-3110.
    • (2005) Stat Med , vol.24 , pp. 3089-3110
    • Xie, J.1    Liu, C.2
  • 27
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M,. Generating survival times to simulate Cox proportional hazards models. Stat Med 2005; 24: 1713-1723.
    • (2005) Stat Med , vol.24 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 28
    • 47749131861 scopus 로고    scopus 로고
    • The performance of two data-generation processes for data with specified marginal treatment odds ratios
    • Austin PC, Stafford J,. The performance of two data-generation processes for data with specified marginal treatment odds ratios. Commun Stat Simul Comput 2008; 37: 1039-1051.
    • (2008) Commun Stat Simul Comput , vol.37 , pp. 1039-1051
    • Austin, P.C.1    Stafford, J.2
  • 29
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • Austin PC,. A data-generation process for data with specified risk differences or numbers needed to treat. Commun Stat Simul Comp 2010; 39: 563-577.
    • (2010) Commun Stat Simul Comp , vol.39 , pp. 563-577
    • Austin, P.C.1
  • 30
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM,. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med 2007; 26: 734-753.
    • (2007) Stat Med , vol.26 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 31
    • 84892372742 scopus 로고
    • The robust inference for the proportional hazards model
    • Lin DY, Wei LJ,. The robust inference for the proportional hazards model. J Am Stat Assoc 1989; 84: 1074-1078.
    • (1989) J Am Stat Assoc , vol.84 , pp. 1074-1078
    • Lin, D.Y.1    Wei, L.J.2
  • 33
    • 67249097811 scopus 로고    scopus 로고
    • Type i error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses
    • Austin PC. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. Int J Biostat 2009; 5.
    • (2009) Int J Biostat , vol.5
    • Austin, P.C.1
  • 34
    • 79955639125 scopus 로고    scopus 로고
    • Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples
    • Austin PC,. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Stat Med 2011; 30: 1292-1301.
    • (2011) Stat Med , vol.30 , pp. 1292-1301
    • Austin, P.C.1
  • 36
    • 0003138938 scopus 로고
    • Comparison of multivariate matching methods: Structures, distances, and algorithms
    • Gu XS, Rosenbaum PR,. Comparison of multivariate matching methods: structures, distances, and algorithms. J Comput Graph Stat 1993; 2: 405-420.
    • (1993) J Comput Graph Stat , vol.2 , pp. 405-420
    • Gu, X.S.1    Rosenbaum, P.R.2
  • 37
    • 84893777424 scopus 로고    scopus 로고
    • A comparison of 12 algorithms for matching on the propensity score
    • press. DOI: 10.1002/sim.6004
    • Austin PC. A comparison of 12 algorithms for matching on the propensity score. Stat Med 2013, in press. DOI: 10.1002/sim.6004.
    • (2013) Stat Med
    • Austin, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.