메뉴 건너뛰기




Volumn 11, Issue 3, 2012, Pages 222-229

Propensity score applied to survival data analysis through proportional hazards models: A Monte Carlo study

Author keywords

bias; propensity score; simulation; survival; treatment effect

Indexed keywords

ALTERNATIVE HYPOTHESIS; ARTICLE; CORRELATION ANALYSIS; CORRELATION COEFFICIENT; COVARIANCE; DATA ANALYSIS; HAZARD RATIO; MONTE CARLO METHOD; NULL HYPOTHESIS; PROPENSITY SCORE; PROPORTIONAL HAZARDS MODEL; RELIABILITY; SAMPLE SIZE; SIMULATION; STRATIFIED SAMPLE; SURVIVAL; SURVIVAL TIME; TREATMENT OUTCOME; VARIANCE; COMPUTER SIMULATION; HUMAN; OBSERVATIONAL STUDY; PROCEDURES;

EID: 84861097401     PISSN: 15391604     EISSN: 15391612     Source Type: Journal    
DOI: 10.1002/pst.537     Document Type: Article
Times cited : (107)

References (22)
  • 3
    • 0042634391 scopus 로고    scopus 로고
    • Rate limiting factors in recruitment of patients to clinical trials in cancer research: Descriptive study
    • Corrie P, Shaw J, Harris R,. Rate limiting factors in recruitment of patients to clinical trials in cancer research: descriptive study. British Medical Journal 2003; 327: 320-321. DOI: Electronic Resource Number. (Pubitemid 36966619)
    • (2003) British Medical Journal , vol.327 , Issue.7410 , pp. 320-321
    • Corrie, P.1    Shaw, J.2    Harris, R.3
  • 4
    • 0036259144 scopus 로고    scopus 로고
    • Selection of patients may limit the generalizability of results from cancer trials
    • DOI 10.1080/028418602753669490
    • Fossa SD, Skovlund E,. Selection of patients may limit the generalizability of results from cancer trials. Acta Oncologica 2002; 41: 131-137. DOI: Electronic Resource Number. (Pubitemid 34557072)
    • (2002) Acta Oncologica , vol.41 , Issue.2 , pp. 131-137
    • Fossa, S.D.1    Skovlund, E.2
  • 5
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effect
    • DOI: Electronic Resource Number
    • Rosenbaum P, Rubin D,. The central role of the propensity score in observational studies for causal effect. Biometrika 1983; 70: 41-55. DOI: Electronic Resource Number.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 6
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • DOI 10.1002/sim.2781
    • Austin PC,. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26: 3078-3094. DOI: Electronic Resource Number. (Pubitemid 47019008)
    • (2007) Statistics in Medicine , vol.26 , Issue.16 , pp. 3078-3094
    • Austin, P.C.1
  • 7
    • 43049162150 scopus 로고    scopus 로고
    • The performance of different propensity-score methods for estimating relative risks
    • DOI: Electronic Resource Number
    • Austin PC,. The performance of different propensity-score methods for estimating relative risks. Journal of Clinical Epidemiology 2008; 61: 537-545. DOI: Electronic Resource Number.
    • (2008) Journal of Clinical Epidemiology , vol.61 , pp. 537-545
    • Austin, P.C.1
  • 8
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • DOI 10.1002/sim.2580
    • Austin PC, Grootendorst P, Anderson GM,. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26: 734-753, DOI: Electronic Resource Number. (Pubitemid 46206593)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 9
    • 38849111846 scopus 로고    scopus 로고
    • Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure
    • DOI 10.1002/sim.3133
    • Senn S, Graf E, Caputo A,. Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure. Statistics in Medicine 2007; 26: 5529-5544. DOI: Electronic Resource Number. (Pubitemid 351193579)
    • (2007) Statistics in Medicine , vol.26 , Issue.30 , pp. 5529-5544
    • Senn, S.1    Graf, E.2    Caputo, A.3
  • 10
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: A Monte Carlo study
    • DOI 10.1002/sim.2618
    • Austin PC, Grootendorst P, Normand SL, Anderson GM,. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26: 754-768. DOI: Electronic Resource Number. (Pubitemid 46206594)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.-L.T.3    Anderson, G.M.4
  • 11
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • DOI: Electronic Resource Number
    • Zeger SL, Liang KY,. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121-130. DOI: Electronic Resource Number.
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.L.1    Liang, K.Y.2
  • 12
    • 60849116685 scopus 로고    scopus 로고
    • Some methods of propensity-score matching had superior performance to others: Results of an empirical investigation and Monte Carlo simulations
    • DOI: Electronic Resource Number
    • Austin PC,. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations. Biometrical Journal 2009; 51: 171-184. DOI: Electronic Resource Number.
    • (2009) Biometrical Journal , vol.51 , pp. 171-184
    • Austin, P.C.1
  • 13
    • 0024237653 scopus 로고
    • A quantitative study of the bias in estimating the treatment effect caused by omitting a balanced covariate in survival models
    • Chastang C, Byar D, Piantadosi S,. A quantitative study of the bias in estimating the treatment effect caused by omitting a balanced covariate in survival models. Statistics in Medicine 1988; 7: 1243-1255. DOI: Electronic Resource Number. (Pubitemid 19018454)
    • (1988) Statistics in Medicine , vol.7 , Issue.12 , pp. 1243-1255
    • Chastang, C.1    Byar, D.2    Piantadosi, S.3
  • 14
    • 0000619374 scopus 로고
    • Misspecified proportional hazard models
    • DOI: Electronic Resource Number
    • Struthers C, Kalbfleisch J,. Misspecified proportional hazard models. Biometrika 1986; 73: 363-369. DOI: Electronic Resource Number.
    • (1986) Biometrika , vol.73 , pp. 363-369
    • Struthers, C.1    Kalbfleisch, J.2
  • 15
    • 77949362528 scopus 로고    scopus 로고
    • Proportional subdistribution hazards modeling offers a summary analysis, even if misspecified
    • DOI: Electronic Resource Number
    • Grambauer N, Schumacher M, Beyersmann J,. Proportional subdistribution hazards modeling offers a summary analysis, even if misspecified. Statistics in Medicine 2010; 29: 875-884. DOI: Electronic Resource Number.
    • (2010) Statistics in Medicine , vol.29 , pp. 875-884
    • Grambauer, N.1    Schumacher, M.2    Beyersmann, J.3
  • 16
    • 0000394113 scopus 로고
    • The use of matched sampling and regression adjustment to remove bias in observational studies
    • DOI: Electronic Resource Number
    • Rubin D,. The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 1973; 29: 185-203. DOI: Electronic Resource Number.
    • (1973) Biometrics , vol.29 , pp. 185-203
    • Rubin, D.1
  • 17
    • 33745588280 scopus 로고    scopus 로고
    • Interval estimation for treatment effects using propensity score matching
    • DOI 10.1002/sim.2277
    • Hill J, Reiter JP,. Interval estimation for treatment effects using propensity score matching. Statistics in Medicine 2006; 25: 2230-2256. DOI: Electronic Resource Number. (Pubitemid 43985456)
    • (2006) Statistics in Medicine , vol.25 , Issue.13 , pp. 2230-2256
    • Hill, J.1    Reiter, J.P.2
  • 18
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in non-experimental studies: Re-evaluation the evaluation of training programs
    • DOI: Electronic Resource Number
    • Dehejia R, Wahba S,. Causal effects in non-experimental studies: re-evaluation the evaluation of training programs. Journal of the American Statistical Association 1999; 94: 1053-1062. DOI: Electronic Resource Number.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1053-1062
    • Dehejia, R.1    Wahba, S.2
  • 19
    • 1542742319 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • DOI: Electronic Resource Number
    • Rubin D, Thomas N,. Combining propensity score matching with additional adjustments for prognostic covariates. Journal of the American Statistical Association 2000; 95: 573-585. DOI: Electronic Resource Number.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 573-585
    • Rubin, D.1    Thomas, N.2
  • 20
    • 44649111276 scopus 로고    scopus 로고
    • Developing practical recommendations for the use of propensity scores: Discussion of 'A critical appraisal of propensity score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine
    • DOI 10.1002/sim.3207
    • Stuart EA,. Developing practical recommendations for the use of propensity scores: discussion of 'A critical appraisal of propensity score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine. Statistics in Medicine 2008; 27: 2062-2065. (Pubitemid 351772303)
    • (2008) Statistics in Medicine , vol.27 , Issue.12 , pp. 2062-2065
    • Stuart, E.A.1
  • 21
    • 79955639125 scopus 로고    scopus 로고
    • Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples
    • DOI: Electronic Resource Number
    • Austin PC,. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30: 1292-1301. DOI: Electronic Resource Number.
    • (2011) Statistics in Medicine , vol.30 , pp. 1292-1301
    • Austin, P.C.1
  • 22
    • 67249097811 scopus 로고    scopus 로고
    • Coverage of confidence intervals, and variance estimation in propensity-score matched analyses
    • Article 13. DOI: Electronic Resource Number
    • Austin PC,. Coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics 2009; 5:Article 13. DOI: Electronic Resource Number.
    • (2009) The International Journal of Biostatistics , vol.5
    • Austin, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.