메뉴 건너뛰기




Volumn 6, Issue 8, 2017, Pages 1545-1553

Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering

Author keywords

CEN epigeneticity; centromeres; CRISPR Cas9; episomal plasmids; nonconventional yeasts; Scheffersomyces stipitis

Indexed keywords

DNA; FUNGAL PROTEIN;

EID: 85027466630     PISSN: None     EISSN: 21615063     Source Type: Journal    
DOI: 10.1021/acssynbio.7b00046     Document Type: Article
Times cited : (49)

References (63)
  • 1
    • 53649106195 scopus 로고    scopus 로고
    • Next-generation DNA sequencing
    • Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing Nat. Biotechnol. 26, 1135-1145 10.1038/nbt1486
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1135-1145
    • Shendure, J.1    Ji, H.2
  • 2
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. the new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J. A. and Charpentier, E. (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science 346, 1258096 10.1126/science.1258096
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 3
    • 84878937349 scopus 로고    scopus 로고
    • Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain
    • Foureau, E. et al. 2013, Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain Biotechnol. Lett. 35, 1035-1043 10.1007/s10529-013-1169-7
    • (2013) Biotechnol. Lett. , vol.35 , pp. 1035-1043
    • Foureau, E.1
  • 4
    • 84891588399 scopus 로고    scopus 로고
    • Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining
    • Kretzschmar, A. et al. 2013, Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining Curr. Genet. 59, 63-72 10.1007/s00294-013-0389-7
    • (2013) Curr. Genet. , vol.59 , pp. 63-72
    • Kretzschmar, A.1
  • 5
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: Many choices for appropriate answers
    • Mechali, M. (2010) Eukaryotic DNA replication origins: many choices for appropriate answers Nat. Rev. Mol. Cell Biol. 11, 728-738 10.1038/nrm2976
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 728-738
    • Mechali, M.1
  • 6
    • 84887403791 scopus 로고    scopus 로고
    • Time to be versatile: Regulation of the replication timing program in budding yeast
    • Yoshida, K., Poveda, A., and Pasero, P. (2013) Time to be versatile: regulation of the replication timing program in budding yeast J. Mol. Biol. 425, 4696-4705 10.1016/j.jmb.2013.09.020
    • (2013) J. Mol. Biol. , vol.425 , pp. 4696-4705
    • Yoshida, K.1    Poveda, A.2    Pasero, P.3
  • 7
    • 0346484153 scopus 로고
    • Autonomously replicating sequences in Saccharomyces cerevisiae
    • Chan, C. S. and Tye, B. K. (1980) Autonomously replicating sequences in Saccharomyces cerevisiae Proc. Natl. Acad. Sci. U. S. A. 77, 6329-6333 10.1073/pnas.77.11.6329
    • (1980) Proc. Natl. Acad. Sci. U. S. A. , vol.77 , pp. 6329-6333
    • Chan, C.S.1    Tye, B.K.2
  • 8
    • 77953208022 scopus 로고    scopus 로고
    • A comprehensive genome-wide map of autonomously replicating sequences in a naive genome
    • Liachko, I., Bhaskar, A., Lee, C., Chung, S. C. C., Tye, B.-K., and Keich, U. (2010) A comprehensive genome-wide map of autonomously replicating sequences in a naive genome PLoS Genet. 6, e1000946 10.1371/journal.pgen.1000946
    • (2010) PLoS Genet. , vol.6 , pp. e1000946
    • Liachko, I.1    Bhaskar, A.2    Lee, C.3    Chung, S.C.C.4    Tye, B.-K.5    Keich, U.6
  • 9
    • 33947156343 scopus 로고    scopus 로고
    • Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis
    • Jeffries, T. W. et al. 2007, Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis Nat. Biotechnol. 25, 319-326 10.1038/nbt1290
    • (2007) Nat. Biotechnol. , vol.25 , pp. 319-326
    • Jeffries, T.W.1
  • 10
    • 84891922490 scopus 로고    scopus 로고
    • Rewiring yeast sugar transporter preference through modifying a conserved protein motif
    • Young, E. M., Tong, A., Bui, H., Spofford, C., and Alper, H. S. (2014) Rewiring yeast sugar transporter preference through modifying a conserved protein motif Proc. Natl. Acad. Sci. U. S. A. 111, 131-136 10.1073/pnas.1311970111
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , pp. 131-136
    • Young, E.M.1    Tong, A.2    Bui, H.3    Spofford, C.4    Alper, H.S.5
  • 11
    • 84862800120 scopus 로고    scopus 로고
    • A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae
    • Young, E. M., Comer, A. D., Huang, H., and Alper, H. S. (2012) A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae Metab. Eng. 14, 401-411 10.1016/j.ymben.2012.03.004
    • (2012) Metab. Eng. , vol.14 , pp. 401-411
    • Young, E.M.1    Comer, A.D.2    Huang, H.3    Alper, H.S.4
  • 12
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin, Y. S., Alper, H., Yang, Y. T., and Stephanopoulos, G. (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach Appl. Environ. Microb. 71, 8249-8256 10.1128/AEM.71.12.8249-8256.2005
    • (2005) Appl. Environ. Microb. , vol.71 , pp. 8249-8256
    • Jin, Y.S.1    Alper, H.2    Yang, Y.T.3    Stephanopoulos, G.4
  • 13
    • 84862231336 scopus 로고    scopus 로고
    • High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    • Kim, S. R., Ha, S. J., Kong, I. I., and Jin, Y. S. (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae Metab. Eng. 14, 336-343 10.1016/j.ymben.2012.04.001
    • (2012) Metab. Eng. , vol.14 , pp. 336-343
    • Kim, S.R.1    Ha, S.J.2    Kong, I.I.3    Jin, Y.S.4
  • 14
    • 84876090690 scopus 로고    scopus 로고
    • Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis
    • Kim, S. R., Kwee, N. R., Kim, H., and Jin, Y. S. (2013) Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis FEMS Yeast Res. 13, 312-321 10.1111/1567-1364.12036
    • (2013) FEMS Yeast Res. , vol.13 , pp. 312-321
    • Kim, S.R.1    Kwee, N.R.2    Kim, H.3    Jin, Y.S.4
  • 18
    • 84984855496 scopus 로고    scopus 로고
    • Yeast factories for the production of aromatic compounds: From building blocks to plant secondary metabolites
    • Suastegui, M. and Shao, Z. (2016) Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites J. Ind. Microbiol. Biotechnol. 43, 1611-1624 10.1007/s10295-016-1824-9
    • (2016) J. Ind. Microbiol. Biotechnol. , vol.43 , pp. 1611-1624
    • Suastegui, M.1    Shao, Z.2
  • 19
    • 70149095590 scopus 로고    scopus 로고
    • Major evolutionary transitions in centromere complexity
    • Malik, H. S. and Henikoff, S. (2009) Major evolutionary transitions in centromere complexity Cell 138, 1067-1082 10.1016/j.cell.2009.08.036
    • (2009) Cell , vol.138 , pp. 1067-1082
    • Malik, H.S.1    Henikoff, S.2
  • 20
    • 35548985820 scopus 로고    scopus 로고
    • Centromere identity is specified by a single centromeric nucleosome in budding yeast
    • Furuyama, S. and Biggins, S. (2007) Centromere identity is specified by a single centromeric nucleosome in budding yeast Proc. Natl. Acad. Sci. U. S. A. 104, 14706-14711 10.1073/pnas.0706985104
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 14706-14711
    • Furuyama, S.1    Biggins, S.2
  • 21
    • 0037459109 scopus 로고    scopus 로고
    • Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling
    • Cleveland, D. W., Mao, Y., and Sullivan, K. F. (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling Cell 112, 407-421 10.1016/S0092-8674(03)00115-6
    • (2003) Cell , vol.112 , pp. 407-421
    • Cleveland, D.W.1    Mao, Y.2    Sullivan, K.F.3
  • 22
    • 0035847053 scopus 로고    scopus 로고
    • Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica
    • Vernis, L. et al. 2001, Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica J. Mol. Biol. 305, 203-217 10.1006/jmbi.2000.4300
    • (2001) J. Mol. Biol. , vol.305 , pp. 203-217
    • Vernis, L.1
  • 23
    • 0027476895 scopus 로고
    • A DNA-polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae
    • Houtteman, S. W. and Elder, R. T. (1993) A DNA-polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae Mol. Cell. Biol. 13, 1489-1496 10.1128/MCB.13.3.1489
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 1489-1496
    • Houtteman, S.W.1    Elder, R.T.2
  • 24
    • 0031885474 scopus 로고    scopus 로고
    • Cloning and disruption of the beta-isopropylmalate dehydrogenase gene (LEU2) of Pichia stipitis with URA3 and recovery of the double auxotroph
    • Lu, P., Davis, B. P., Hendrick, J., and Jeffries, T. W. (1998) Cloning and disruption of the beta-isopropylmalate dehydrogenase gene (LEU2) of Pichia stipitis with URA3 and recovery of the double auxotroph Appl. Microbiol. Biotechnol. 49, 141-146 10.1007/s002530051150
    • (1998) Appl. Microbiol. Biotechnol. , vol.49 , pp. 141-146
    • Lu, P.1    Davis, B.P.2    Hendrick, J.3    Jeffries, T.W.4
  • 25
    • 0028110404 scopus 로고
    • High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2
    • Yang, V. W., Marks, J. A., Davis, B. P., and Jeffries, T. W. (1994) High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2 Appl. Environ. Microbiol. 60, 4245-4254
    • (1994) Appl. Environ. Microbiol. , vol.60 , pp. 4245-4254
    • Yang, V.W.1    Marks, J.A.2    Davis, B.P.3    Jeffries, T.W.4
  • 26
    • 32844474028 scopus 로고    scopus 로고
    • Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis
    • Laplaza, J. M., Torres, B. R., Jin, Y. S., and Jeffries, T. W. (2006) Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis Enzyme Microb. Technol. 38, 741-747 10.1016/j.enzmictec.2005.07.024
    • (2006) Enzyme Microb. Technol. , vol.38 , pp. 741-747
    • Laplaza, J.M.1    Torres, B.R.2    Jin, Y.S.3    Jeffries, T.W.4
  • 27
    • 34548792233 scopus 로고    scopus 로고
    • Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters
    • Ghosh, S. K., Hajra, S., and Jayaram, M. (2007) Faithful segregation of the multicopy yeast plasmid through cohesin-mediated recognition of sisters Proc. Natl. Acad. Sci. U. S. A. 104, 13034-13039 10.1073/pnas.0702996104
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 13034-13039
    • Ghosh, S.K.1    Hajra, S.2    Jayaram, M.3
  • 28
    • 84958818404 scopus 로고    scopus 로고
    • The partitioning and copy number control systems of the selfish yeast plasmid: An optimized molecular design for stable persistence in host cells
    • Yen Ting, L., Sau, S., Ma, C. H., Kachroo, A. H., Rowley, P. A., Chang, K. M., Fan, H. F., and Jayaram, M. (2014) The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells Microbiol. Spectrum 10.1128/microbiolspec.PLAS-0003-2013
    • (2014) Microbiol. Spectrum
    • Yen Ting, L.1    Sau, S.2    Ma, C.H.3    Kachroo, A.H.4    Rowley, P.A.5    Chang, K.M.6    Fan, H.F.7    Jayaram, M.8
  • 29
    • 58149374566 scopus 로고    scopus 로고
    • Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis
    • Padmanabhan, S., Thakur, J., Siddharthan, R., and Sanyal, K. (2008) Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis Proc. Natl. Acad. Sci. U. S. A. 105, 19797-19802 10.1073/pnas.0809770105
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 19797-19802
    • Padmanabhan, S.1    Thakur, J.2    Siddharthan, R.3    Sanyal, K.4
  • 30
    • 3843076217 scopus 로고    scopus 로고
    • Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
    • Sanyal, K., Baum, M., and Carbon, J. (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique Proc. Natl. Acad. Sci. U. S. A. 101, 11374-11379 10.1073/pnas.0404318101
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 11374-11379
    • Sanyal, K.1    Baum, M.2    Carbon, J.3
  • 31
    • 0022133409 scopus 로고
    • Functional selection and analysis of yeast centromeric DNA
    • Hieter, P. et al. 1985, Functional selection and analysis of yeast centromeric DNA Cell 42, 913-921 10.1016/0092-8674(85)90287-9
    • (1985) Cell , vol.42 , pp. 913-921
    • Hieter, P.1
  • 32
    • 0021906690 scopus 로고
    • Mitotic stability of yeast chromosomes-a colony color assay that measures nondisjunction and chromosome loss
    • Hieter, P., Mann, C., Snyder, M., and Davis, R. W. (1985) Mitotic stability of yeast chromosomes-a colony color assay that measures nondisjunction and chromosome loss Cell 40, 381-392 10.1016/0092-8674(85)90152-7
    • (1985) Cell , vol.40 , pp. 381-392
    • Hieter, P.1    Mann, C.2    Snyder, M.3    Davis, R.W.4
  • 33
    • 0027938794 scopus 로고
    • A novel epigenetic effect can alter centromere function in fission yeast
    • Steiner, N. C. and Clarke, L. (1994) A novel epigenetic effect can alter centromere function in fission yeast Cell 79, 865-874 10.1016/0092-8674(94)90075-2
    • (1994) Cell , vol.79 , pp. 865-874
    • Steiner, N.C.1    Clarke, L.2
  • 34
    • 0032076906 scopus 로고    scopus 로고
    • Centromeric chromatin and epigenetic effects in kinetochore assembly
    • Wiens, G. R. and Sorger, P. K. (1998) Centromeric chromatin and epigenetic effects in kinetochore assembly Cell 93, 313-316 10.1016/S0092-8674(00)81157-5
    • (1998) Cell , vol.93 , pp. 313-316
    • Wiens, G.R.1    Sorger, P.K.2
  • 35
    • 0034633494 scopus 로고    scopus 로고
    • Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae
    • Gerton, J. L. et al. 2000, Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae Proc. Natl. Acad. Sci. U. S. A. 97, 11383-11390 10.1073/pnas.97.21.11383
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 11383-11390
    • Gerton, J.L.1
  • 36
    • 47949108144 scopus 로고    scopus 로고
    • High-resolution mapping of meiotic crossovers and non-crossovers in yeast
    • Mancera, E., Bourgon, R., Brozzi, A., Huber, W., and Steinmetz, L. M. (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast Nature 454, 479-485 10.1038/nature07135
    • (2008) Nature , vol.454 , pp. 479-485
    • Mancera, E.1    Bourgon, R.2    Brozzi, A.3    Huber, W.4    Steinmetz, L.M.5
  • 37
    • 0031010660 scopus 로고    scopus 로고
    • Clustering of meiotic double-strand breaks on yeast chromosome III
    • Baudat, F. and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III Proc. Natl. Acad. Sci. U. S. A. 94, 5213-5218 10.1073/pnas.94.10.5213
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 5213-5218
    • Baudat, F.1    Nicolas, A.2
  • 38
    • 0024296478 scopus 로고
    • A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences
    • Lambie, E. J. and Roeder, G. S. (1988) A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences Cell 52, 863-873 10.1016/0092-8674(88)90428-X
    • (1988) Cell , vol.52 , pp. 863-873
    • Lambie, E.J.1    Roeder, G.S.2
  • 39
    • 0034766004 scopus 로고    scopus 로고
    • GC-content evolution in mammalian genomes: The biased gene conversion hypothesis
    • Galtier, N., Piganeau, G., Mouchiroud, D., and Duret, L. (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis Genetics 159, 907-911
    • (2001) Genetics , vol.159 , pp. 907-911
    • Galtier, N.1    Piganeau, G.2    Mouchiroud, D.3    Duret, L.4
  • 40
    • 77958517630 scopus 로고    scopus 로고
    • Chromosomal G + C content evolution in yeasts: Systematic interspecies differences, and GC-poor troughs at centromeres
    • Lynch, D. B., Logue, M. E., Butler, G., and Wolfe, K. H. (2010) Chromosomal G + C content evolution in yeasts: systematic interspecies differences, and GC-poor troughs at centromeres Genome Biol. Evol. 2, 572-583 10.1093/gbe/evq042
    • (2010) Genome Biol. Evol. , vol.2 , pp. 572-583
    • Lynch, D.B.1    Logue, M.E.2    Butler, G.3    Wolfe, K.H.4
  • 41
    • 3042720475 scopus 로고    scopus 로고
    • Genome evolution in yeasts
    • Dujon, B. et al. 2004, Genome evolution in yeasts Nature 430, 35-44 10.1038/nature02579
    • (2004) Nature , vol.430 , pp. 35-44
    • Dujon, B.1
  • 42
    • 0037183856 scopus 로고    scopus 로고
    • Establishment and maintenance of a heterochromatin domain
    • Hall, I. M. et al. 2002, Establishment and maintenance of a heterochromatin domain Science 297, 2232-2237 10.1126/science.1076466
    • (2002) Science , vol.297 , pp. 2232-2237
    • Hall, I.M.1
  • 43
    • 0035839066 scopus 로고    scopus 로고
    • The centromere paradox: Stable inheritance with rapidly evolving DNA
    • Henikoff, S., Ahmad, K., and Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA Science 293, 1098-1102 10.1126/science.1062939
    • (2001) Science , vol.293 , pp. 1098-1102
    • Henikoff, S.1    Ahmad, K.2    Malik, H.S.3
  • 44
    • 84929456653 scopus 로고    scopus 로고
    • Diversity in the organization of centromeric chromatin
    • Steiner, F. A. and Henikoff, S. (2015) Diversity in the organization of centromeric chromatin Curr. Opin. Genet. Dev. 31, 28-35 10.1016/j.gde.2015.03.010
    • (2015) Curr. Opin. Genet. Dev. , vol.31 , pp. 28-35
    • Steiner, F.A.1    Henikoff, S.2
  • 45
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi, P., McAinsh, A. D., Rheinbay, E., and Sorger, P. K. (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins Genome Biol. 7, R23-R23 10.1186/gb-2006-7-3-r23
    • (2006) Genome Biol. , vol.7 , pp. R23-R23
    • Meraldi, P.1    McAinsh, A.D.2    Rheinbay, E.3    Sorger, P.K.4
  • 47
    • 84938738904 scopus 로고    scopus 로고
    • Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres
    • Kobayashi, N. et al. 2015, Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres Curr. Biol. 25, 2026-2033 10.1016/j.cub.2015.06.023
    • (2015) Curr. Biol. , vol.25 , pp. 2026-2033
    • Kobayashi, N.1
  • 49
    • 0027285639 scopus 로고
    • Genetic dissection of centromere function
    • Schulman, I. G. and Bloom, K. (1993) Genetic dissection of centromere function Mol. Cell. Biol. 13, 3156-3166 10.1128/MCB.13.6.3156
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3156-3166
    • Schulman, I.G.1    Bloom, K.2
  • 50
    • 84920169061 scopus 로고    scopus 로고
    • Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function
    • Liu, L., Otoupal, P., Pan, A., and Alper, H. S. (2014) Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function FEMS Yeast Res. 14, 1124-1127 10.1111/1567-1364.12201
    • (2014) FEMS Yeast Res. , vol.14 , pp. 1124-1127
    • Liu, L.1    Otoupal, P.2    Pan, A.3    Alper, H.S.4
  • 51
    • 0023368541 scopus 로고
    • Genetic manipulation of centromere function
    • Hill, A. and Bloom, K. (1987) Genetic manipulation of centromere function Mol. Cell. Biol. 7, 2397-2405 10.1128/MCB.7.7.2397
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 2397-2405
    • Hill, A.1    Bloom, K.2
  • 52
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., and Church, G. M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems Nucleic Acids Res. 41, 4336-4343 10.1093/nar/gkt135
    • (2013) Nucleic Acids Res. , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4    Aach, J.5    Church, G.M.6
  • 53
    • 84940726919 scopus 로고    scopus 로고
    • A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
    • Vyas, V. K., Barrasa, M. I., and Fink, G. R. (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families Sci. Adv. 1, e1500248 10.1126/sciadv.1500248
    • (2015) Sci. Adv. , vol.1 , pp. e1500248
    • Vyas, V.K.1    Barrasa, M.I.2    Fink, G.R.3
  • 54
    • 84976902235 scopus 로고    scopus 로고
    • Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae
    • Suastegui, M., Guo, W., Feng, X., and Shao, Z. (2016) Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae Biotechnol. Bioeng. 113, 2676-2685 10.1002/bit.26037
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 2676-2685
    • Suastegui, M.1    Guo, W.2    Feng, X.3    Shao, Z.4
  • 55
    • 84941639495 scopus 로고    scopus 로고
    • Optimization of yeast-based production of medicinal protoberberine alkaloids
    • Galanie, S. and Smolke, C. D. (2015) Optimization of yeast-based production of medicinal protoberberine alkaloids Microb. Cell Fact. 14, 144 10.1186/s12934-015-0332-3
    • (2015) Microb. Cell Fact. , vol.14 , pp. 144
    • Galanie, S.1    Smolke, C.D.2
  • 56
    • 84857048835 scopus 로고    scopus 로고
    • Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools
    • Siddiqui, M. S., Thodey, K., Trenchard, I., and Smolke, C. D. (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools FEMS Yeast Res. 12, 144-170 10.1111/j.1567-1364.2011.00774.x
    • (2012) FEMS Yeast Res. , vol.12 , pp. 144-170
    • Siddiqui, M.S.1    Thodey, K.2    Trenchard, I.3    Smolke, C.D.4
  • 57
    • 84930615040 scopus 로고    scopus 로고
    • Engineering strategies for the fermentative production of plant alkaloids in yeast
    • Trenchard, I. J. and Smolke, C. D. (2015) Engineering strategies for the fermentative production of plant alkaloids in yeast Metab. Eng. 30, 96-104 10.1016/j.ymben.2015.05.001
    • (2015) Metab. Eng. , vol.30 , pp. 96-104
    • Trenchard, I.J.1    Smolke, C.D.2
  • 58
    • 70449533072 scopus 로고    scopus 로고
    • Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae
    • Trantas, E., Panopoulos, N., and Ververidis, F. (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae Metab. Eng. 11, 355-366 10.1016/j.ymben.2009.07.004
    • (2009) Metab. Eng. , vol.11 , pp. 355-366
    • Trantas, E.1    Panopoulos, N.2    Ververidis, F.3
  • 59
    • 84949227547 scopus 로고    scopus 로고
    • BEDTools: The Swiss-Army tool for genome feature analysis
    • 11.12.11-11.12.34
    • Quinlan, A. R. (2014) BEDTools: the Swiss-Army tool for genome feature analysis Curr. Protoc. Bioinformatics 47, 11.12.11-11.12.34 10.1002/0471250953.bi1112s47
    • (2014) Curr. Protoc. Bioinformatics , vol.47
    • Quinlan, A.R.1
  • 61
    • 84884197119 scopus 로고    scopus 로고
    • Construction and engineering of large biochemical pathways via DNA assembler
    • Shao, Z. and Zhao, H. (2013) Construction and engineering of large biochemical pathways via DNA assembler Methods Mol. Biol. 1073, 85-106 10.1007/978-1-62703-625-2-9
    • (2013) Methods Mol. Biol. , vol.1073 , pp. 85-106
    • Shao, Z.1    Zhao, H.2
  • 62
    • 84867645703 scopus 로고    scopus 로고
    • Exploring DNA assembler: A synthetic biology tool for characterizing and engineering natural product gene clusters
    • Shao, Z. and Zhao, H. (2012) Exploring DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters Methods Enzymol. 517, 203-224 10.1016/B978-0-12-404634-4.00010-3
    • (2012) Methods Enzymol. , vol.517 , pp. 203-224
    • Shao, Z.1    Zhao, H.2
  • 63
    • 85005929955 scopus 로고    scopus 로고
    • Manipulating natural product biosynthetic pathways via DNA assembler
    • Shao, Z. and Zhao, H. (2014) Manipulating natural product biosynthetic pathways via DNA assembler Curr. Protoc Chem. Biol. 6, 65-100 10.1002/9780470559277.ch130191
    • (2014) Curr. Protoc Chem. Biol. , vol.6 , pp. 65-100
    • Shao, Z.1    Zhao, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.