메뉴 건너뛰기




Volumn 7, Issue 4, 2010, Pages 252-261

Computational intelligence in early diabetes diagnosis: A review

Author keywords

Algorithm; Artificial neural network; Computational; Diabetes diagnosis; Learning; Logistic regression

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; DATA ANALYSIS; DECISION MAKING; DIABETES MELLITUS; EARLY DIAGNOSIS; LOGISTIC REGRESSION ANALYSIS; MACHINE LEARNING; REVIEW; SUPPORT VECTOR MACHINE; ARTIFICIAL INTELLIGENCE; AUTOMATED PATTERN RECOGNITION; HUMAN;

EID: 80055088256     PISSN: 16136071     EISSN: 16140575     Source Type: Journal    
DOI: 10.1900/RDS.2010.7.252     Document Type: Review
Times cited : (69)

References (56)
  • 1
    • 0041363358 scopus 로고    scopus 로고
    • Dietary, evolutionary, and modernizing influences on the prevalence of type 2 diabetes
    • Lieberman LS. Dietary, evolutionary, and modernizing influences on the prevalence of type 2 diabetes. Annu Rev Nutr 2003. 23:345-377.
    • (2003) Annu Rev Nutr , vol.23 , pp. 345-377
    • Lieberman, L.S.1
  • 4
    • 11944263528 scopus 로고
    • Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis
    • Harris MI, Klein R, Wellborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care 1992. 15:815-819.
    • (1992) Diabetes Care , vol.15 , pp. 815-819
    • Harris, M.I.1    Klein, R.2    Wellborn, T.A.3    Knuiman, M.W.4
  • 8
    • 63649124233 scopus 로고    scopus 로고
    • Tools for predicting the risk of type 2 diabetes in daily practice
    • Schwarz PE, Li J, Lindstorm J, Tuomilehto J. Tools for predicting the risk of type 2 diabetes in daily practice. Horm Metab Res 2009. 41(2):86-97.
    • (2009) Horm Metab Res , vol.41 , Issue.2 , pp. 86-97
    • Schwarz, P.E.1    Li, J.2    Lindstorm, J.3    Tuomilehto, J.4
  • 9
    • 33748181096 scopus 로고    scopus 로고
    • Machine learning for detection and diagnosis of disease
    • Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng 2006. 8:537-565.
    • (2006) Annu Rev Biomed Eng , vol.8 , pp. 537-565
    • Sajda, P.1
  • 11
    • 77953769694 scopus 로고    scopus 로고
    • Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes
    • Kazemnejad A, Batvandi Z, Faradmal J. Comparison of artificial neural network and binary logistic regression for determination of impaired glucose tolerance/diabetes. East Mediterr Health J 2010. 16(6):615-620.
    • (2010) East Mediterr Health J , vol.16 , Issue.6 , pp. 615-620
    • Kazemnejad, A.1    Batvandi, Z.2    Faradmal, J.3
  • 13
    • 48649092511 scopus 로고    scopus 로고
    • Diabetes risk calculator: A simple tool for detecting undiagnosed diabetes and pre-diabetes
    • Heikes KE, Eddy DM, Arondekar B, Schlessinger L. Diabetes risk calculator: a simple tool for detecting undiagnosed diabetes and pre-diabetes. Diabetes Care 2008. 31:1040-1045.
    • (2008) Diabetes Care , vol.31 , pp. 1040-1045
    • Heikes, K.E.1    Eddy, D.M.2    Arondekar, B.3    Schlessinger, L.4
  • 14
    • 0021921558 scopus 로고
    • Logistic regression in survival analysis
    • Abbot RD. Logistic regression in survival analysis. Am J Epidemiol 1985. 121(3):465-471.
    • (1985) Am J Epidemiol , vol.121 , Issue.3 , pp. 465-471
    • Abbot, R.D.1
  • 15
    • 0029690427 scopus 로고    scopus 로고
    • Using neural networks to predict the onset of diabetes mellitus
    • Shanker MS. Using neural networks to predict the onset of diabetes mellitus. J Chem Inf Comput Sci 1996. 36:35-41.
    • (1996) J Chem Inf Comput Sci , vol.36 , pp. 35-41
    • Shanker, M.S.1
  • 18
    • 77957831716 scopus 로고    scopus 로고
    • Hybrid prediction model for type-2 diabetic patients
    • Patil BM, Joshi RC, Toshniwal D. Hybrid prediction model for type-2 diabetic patients. Exp Syst Appl 2010. 37:8102-8108.
    • (2010) Exp Syst Appl , vol.37 , pp. 8102-8108
    • Patil, B.M.1    Joshi, R.C.2    Toshniwal, D.3
  • 19
    • 81755183720 scopus 로고    scopus 로고
    • Human talent prediction in HRM using C4.5 classification algorithm
    • Jantan H, Hamdan AR, Othman ZA. Human talent prediction in HRM using C4.5 classification algorithm. Int J Comp Sci Engin 2010. 2:2526-2534.
    • (2010) Int J Comp Sci Engin , vol.2 , pp. 2526-2534
    • Jantan, H.1    Hamdan, A.R.2    Othman, Z.A.3
  • 20
    • 0020068152 scopus 로고
    • Self-organizing formation of topologically correct feature maps
    • Kohonen T. Self-organizing formation of topologically correct feature maps. Biol Cybern 1982. 43:59-69.
    • (1982) Biol Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 21
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Fritzke B. A growing neural gas network learns topologies. Adv Neural Inf Process Syst 1995. 7:625-632.
    • (1995) Adv Neural Inf Process Syst , vol.7 , pp. 625-632
    • Fritzke, B.1
  • 22
    • 0028748949 scopus 로고
    • Growing cell structures a self-organizing network for unsupervised and supervised learning
    • Fritzke B. Growing cell structures a self-organizing network for unsupervised and supervised learning. Neural Netw 1994. 7:1441-1460.
    • (1994) Neural Netw , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 23
    • 60349097906 scopus 로고    scopus 로고
    • On-line pattern analysis by evolving self-organizing maps
    • Proceedings of the 5th Biannual Conference On Aritificial Neural Networks and Expert Systems (ANNES), Dunedin
    • Deng D, Kasabov N. On-line pattern analysis by evolving self-organizing maps. Proceedings of the 5th Biannual Conference on Aritificial Neural Networks and Expert Systems (ANNES), Dunedin, 2001, 46-51.
    • (2001) , pp. 46-51
    • Deng, D.1    Kasabov, N.2
  • 24
    • 16244389854 scopus 로고    scopus 로고
    • An empirical comparison of kernel selection for support vector machines
    • 2nd International Conference On Hybrid Intelligent Systems Soft Computing systems: Design, Management and Applications, IOS Press, The Netherlands
    • Ali S, Abraham A. An empirical comparison of kernel selection for support vector machines. 2nd International Conference on Hybrid Intelligent Systems, Soft Computing systems: Design, Management and Applications, IOS Press, The Netherlands, 2002, 321-330.
    • (2002) , pp. 321-330
    • Ali, S.1    Abraham, A.2
  • 25
    • 77954597013 scopus 로고    scopus 로고
    • Intelligible support vector machines for diagnosis of diabetes mellitus
    • Barakat NH, Bradley AP, Barakat MB. Intelligible support vector machines for diagnosis of diabetes mellitus. Trans Inf Technol Biomed 2010. 14:1114-1120.
    • (2010) Trans Inf Technol Biomed , vol.14 , pp. 1114-1120
    • Barakat, N.H.1    Bradley, A.P.2    Barakat, M.B.3
  • 26
    • 77952318104 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
    • Gunes PK, Aslan A. A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine. Exp Syst Appl 2008. 34:214-221.
    • (2008) Exp Syst Appl , vol.34 , pp. 214-221
    • Gunes, P.K.1    Aslan, A.2
  • 27
    • 77952256293 scopus 로고    scopus 로고
    • A New smooth support vector machine and its applications in diabetes disease diagnosis
    • Purnami SW, Embong A, Zain JM. A New smooth support vector machine and its applications in diabetes disease diagnosis. J Comp Sci 2009. 5:1006-1011.
    • (2009) J Comp Sci , vol.5 , pp. 1006-1011
    • Purnami, S.W.1    Embong, A.2    Zain, J.M.3
  • 29
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Meth 2000. 43:3-31.
    • (2000) J Microbiol Meth , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 30
    • 0026154952 scopus 로고
    • Fast training algorithms for multi-layer neural nets
    • Brent RP. Fast training algorithms for multi-layer neural nets. IEEE Trans Neural Netw 1991. 2(3):346-354.
    • (1991) IEEE Trans Neural Netw , vol.2 , Issue.3 , pp. 346-354
    • Brent, R.P.1
  • 31
    • 0026745182 scopus 로고
    • On the problem of local minima in backpropagation
    • Gori M, Tesi A. On the problem of local minima in backpropagation. IEEE Trans Pattern Anal Mach Intell 1992. 14:76-85.
    • (1992) IEEE Trans Pattern Anal Mach Intell , vol.14 , pp. 76-85
    • Gori, M.1    Tesi, A.2
  • 35
    • 0029373066 scopus 로고
    • An adaptive learning algorithm for principal component analysis
    • Chen LH, Chang S. An adaptive learning algorithm for principal component analysis. IEEE Trans Neural Netw 1995. 6:1255-1263.
    • (1995) IEEE Trans Neural Netw , vol.6 , pp. 1255-1263
    • Chen, L.H.1    Chang, S.2
  • 36
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan MT, Menhaj M. Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 1994. 5:989-993.
    • (1994) IEEE Trans Neural Netw , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 37
    • 33645751073 scopus 로고    scopus 로고
    • A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro fuzzy inference systems
    • Gulbag A, Temurtas F. A study on quantitative classification of binary gas mixture using neural networks and adaptive neuro fuzzy inference systems. Sens Actuators B Chem 2006. 115:252-262.
    • (2006) Sens Actuators B Chem , vol.115 , pp. 252-262
    • Gulbag, A.1    Temurtas, F.2
  • 39
    • 60349107274 scopus 로고    scopus 로고
    • A comparative study on diabetes disease diagnosis using neural networks
    • Temurtas H, Yumusak N, Temurtas F. A comparative study on diabetes disease diagnosis using neural networks. Expert Syst Appl 2009. 36:8610-8615.
    • (2009) Expert Syst Appl , vol.36 , pp. 8610-8615
    • Temurtas, H.1    Yumusak, N.2    Temurtas, F.3
  • 40
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF. Probabilistic neural networks. Neural Netw 1990. 3:109-118.
    • (1990) Neural Netw , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 41
    • 15844363062 scopus 로고    scopus 로고
    • Radial basis functions: Theory and implementations
    • Buhmann, Martin D. Radial basis functions: theory and implementations. Cambridge University Press, 2003. pp 54-78.
    • (2003) Cambridge University Press , pp. 54-78
    • Buhmann, M.D.1
  • 43
    • 81755184804 scopus 로고
    • Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence
    • Bart K. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice Hall, 1992. pp 36-49.
    • (1992) Prentice Hall , pp. 36-49
    • Bart, K.1
  • 44
    • 34248592215 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
    • Polat K, Gunes S, Arslan A. A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine. Exp Syst Appl 2008. 34:482-487.
    • (2008) Exp Syst Appl , vol.34 , pp. 482-487
    • Polat, K.1    Gunes, S.2    Arslan, A.3
  • 45
    • 77955334293 scopus 로고    scopus 로고
    • An intel ligent diagnosis system for diabetes on Linear Discriminant Analysis and Adaptive Network Based Fuzzy Inference System: LDA-ANFIS
    • Dogantekin E, Dogantekin A, Avci D, et al. An intel ligent diagnosis system for diabetes on Linear Discriminant Analysis and Adaptive Network Based Fuzzy Inference System: LDA-ANFIS. Digit Signal Process 2009. 20:1248-1255.
    • (2009) Digit Signal Process , vol.20 , pp. 1248-1255
    • Dogantekin, E.1    Dogantekin, A.2    Avci, D.3
  • 47
    • 0032029156 scopus 로고    scopus 로고
    • ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases
    • Carpenter GA, Markuzon N. ARTMAP-IC and medical diagnosis: instance counting and inconsistent cases. Neural Netw 1998. 11:323-336.
    • (1998) Neural Netw , vol.11 , pp. 323-336
    • Carpenter, G.A.1    Markuzon, N.2
  • 49
    • 67650653722 scopus 로고    scopus 로고
    • Modified mixture of experts for diabetes diagnosis
    • Ubeyli ED. Modified mixture of experts for diabetes diagnosis. J Med Syst 2009. 33:299-305.
    • (2009) J Med Syst , vol.33 , pp. 299-305
    • Ubeyli, E.D.1
  • 50
    • 0032066455 scopus 로고    scopus 로고
    • A connectionist method for pattern classification with diverse features
    • Chen K. A connectionist method for pattern classification with diverse features. Pattern Recognit Lett 1998. 19:7545-558.
    • (1998) Pattern Recognit Lett , vol.19 , pp. 7545-7558
    • Chen, K.1
  • 51
    • 79957698495 scopus 로고    scopus 로고
    • Medical diagnosis using neural network
    • Proceedings of the 3rd International Conference On Electrical and Computer Engineering Dhaka, Bangladesh
    • Kamruzzaman SM, Hasan AR, Siddiquee AB, et al. Medical diagnosis using neural network. Proceedings of the 3rd International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2004. 537-540.
    • (2004) , pp. 537-540
    • Kamruzzaman, S.M.1    Hasan, A.R.2    Siddiquee, A.B.3
  • 52
    • 77956573101 scopus 로고    scopus 로고
    • Automatic diagnosis of diabetes using adaptive neuro-fuzzy inference systems
    • Ubeyli ED. Automatic diagnosis of diabetes using adaptive neuro-fuzzy inference systems. Expert Syst 2010. 27:259-266.
    • (2010) Expert Syst , vol.27 , pp. 259-266
    • Ubeyli, E.D.1
  • 53
    • 81755180775 scopus 로고    scopus 로고
    • Proceedings of the 1st East European Conference on Health Care Modelling and Computation, Craiova, Romania, Craiova, Medical University Press
    • Stoean C, Stoean R, Preuss M, et al. Diabetes diagnosis through the means of a multimodal evolutionary algorithm. Proceedings of the 1st East European Conference on Health Care Modelling and Computation, Craiova, Romania, Craiova, Medical University Press, 2005, 277-289.
    • (2005) Diabetes Diagnosis Through the Means of a Multimodal Evolutionary Algorithm , pp. 277-289
    • Stoean, C.1    Stoean, R.2    Preuss, M.3
  • 54
    • 0001454975 scopus 로고    scopus 로고
    • Distribution based trees are more
    • Springer, Hong Kong
    • Shang N, Breiman L. Distribution based trees are more accurate. Proceedings of ICONIP 96, Springer, Hong Kong, 1996, 133-138.
    • (1996) Proceedings of ICONIP 96 , pp. 133-138
    • Shang, N.1    Breiman, L.2
  • 55
    • 34249285900 scopus 로고    scopus 로고
    • An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease
    • 702-710
    • Polat K, Gunes S. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digit Sign Proc 2007. 17:702-710.
    • (2007) Digit Sign Proc , vol.17
    • Polat, K.1    Gunes, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.